An LWIR QWIP FPA with sub-5mK NETD and large dynamic range

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION Infrared Physics & Technology Pub Date : 2024-11-21 DOI:10.1016/j.infrared.2024.105629
Hangyu Lu , Ning Li , Xiaohao Zhou , Zhifeng Li , Pingping Chen , Jintong Xu , Xiangyang Li , Wei Lu
{"title":"An LWIR QWIP FPA with sub-5mK NETD and large dynamic range","authors":"Hangyu Lu ,&nbsp;Ning Li ,&nbsp;Xiaohao Zhou ,&nbsp;Zhifeng Li ,&nbsp;Pingping Chen ,&nbsp;Jintong Xu ,&nbsp;Xiangyang Li ,&nbsp;Wei Lu","doi":"10.1016/j.infrared.2024.105629","DOIUrl":null,"url":null,"abstract":"<div><div>QWIP based on the GaAs/AlGaAs material system are commonly used to achieve LWIR FPA. This detector is constrained by the integration charge capacity of conventional integral-readout-reset mode CMOS readout integrated circuits. As a result, the technical specification for the temperature resolution of the infrared detectors, known as NETD, typically ranges from 20 mK to 30 mK. In this paper, we present a 320 × 256 LWIR QWIP FPA, which is formed by bonding quantum well detectors and a pixel-level DROIC. Notably, the NETD achieved by this detector is superior to 5 mK, with the DR exceeding 100 dB, and it operates effectively within a temperature range of 40 K to 80 K, demonstrating excellent adaptability to varying environmental temperatures.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"144 ","pages":"Article 105629"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

QWIP based on the GaAs/AlGaAs material system are commonly used to achieve LWIR FPA. This detector is constrained by the integration charge capacity of conventional integral-readout-reset mode CMOS readout integrated circuits. As a result, the technical specification for the temperature resolution of the infrared detectors, known as NETD, typically ranges from 20 mK to 30 mK. In this paper, we present a 320 × 256 LWIR QWIP FPA, which is formed by bonding quantum well detectors and a pixel-level DROIC. Notably, the NETD achieved by this detector is superior to 5 mK, with the DR exceeding 100 dB, and it operates effectively within a temperature range of 40 K to 80 K, demonstrating excellent adaptability to varying environmental temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
期刊最新文献
Influence of GeO2/TeO2 ratio on thermal, structure and spectroscopic properties of Dy3+-doped tellurite-germanate glass 2.6 GW, mJ-class high-energy femtosecond laser system based on Yb:YAG single-crystal fiber amplifier Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications Multipulse bunches in the Yb-doped mode-locked fiber laser based on NLMMI-NPR hybrid mode locked mechanism Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1