{"title":"Lattice physics approaches for neural networks","authors":"Giampiero Bardella , Simone Franchini , Pierpaolo Pani , Stefano Ferraina","doi":"10.1016/j.isci.2024.111390","DOIUrl":null,"url":null,"abstract":"<div><div>Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111390"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224026154","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.