Novel lipid metabolism factor HIBCH inhibitor synergizes with doxorubicin to suppress osteosarcoma growth and impacts clinical prognosis in osteosarcoma patients

IF 3.4 2区 医学 Q2 Medicine Journal of Bone Oncology Pub Date : 2024-12-01 DOI:10.1016/j.jbo.2024.100652
Xuhui Yuan , Bo Yu , Haiqi Ding , Hongyan Li , Qijing Wang , Lan Lin , Wenming Zhang , Xinyu Fang
{"title":"Novel lipid metabolism factor HIBCH inhibitor synergizes with doxorubicin to suppress osteosarcoma growth and impacts clinical prognosis in osteosarcoma patients","authors":"Xuhui Yuan ,&nbsp;Bo Yu ,&nbsp;Haiqi Ding ,&nbsp;Hongyan Li ,&nbsp;Qijing Wang ,&nbsp;Lan Lin ,&nbsp;Wenming Zhang ,&nbsp;Xinyu Fang","doi":"10.1016/j.jbo.2024.100652","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Osteosarcoma (OS) is a highly malignant primary bone tumor primarily affecting children and adolescents. Despite advancements in therapeutic strategies, long-term survival rates for OS remain unfavorable, especially in advanced or recurrent cases. Emerging evidence has noted the involvement of lipid metabolism dysregulation in OS progression, but the specific mechanisms remain unclear.</div></div><div><h3>Methods</h3><div>A risk model incorporating lipid metabolism-related genes was established to stratify OS patients into high-risk and low-risk groups. Functional assays were conducted to assess the role of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in OS cell activities. Ultra-fast liquid chromatography-mass spectrometry was adopted to analyze the impact of HIBCH on OS cell metabolism. Moreover, the combined effect of HIBCH inhibitor SBF-1 with doxorubicin (DOX) was evaluated through <em>in vitro</em> studies and mouse xenograft models.</div></div><div><h3>Results</h3><div>HIBCH was identified as a key gene involved in the malignant behaviors of OS cells. HIBCH knockdown disrupted tricarboxylic acid (TCA) cycle activity and reduced oxidative phosphorylation in OS cells. SBF-1 showed synergistic effects with DOX in inhibiting malignant phenotypes of OS cells by modulating the Akt-mTOR pathway. <em>In vivo</em> experiments demonstrated that the combination of SBF-1 and DOX significantly suppressed tumor growth in mouse xenograft models.</div></div><div><h3>Conclusions</h3><div>This study reveals the critical role of lipid metabolism in OS progression and suggests a new therapeutic strategy against chemotherapy resistance in OS based on the synergistic combination of SBF-1 with DOX.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"49 ","pages":"Article 100652"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001325","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Osteosarcoma (OS) is a highly malignant primary bone tumor primarily affecting children and adolescents. Despite advancements in therapeutic strategies, long-term survival rates for OS remain unfavorable, especially in advanced or recurrent cases. Emerging evidence has noted the involvement of lipid metabolism dysregulation in OS progression, but the specific mechanisms remain unclear.

Methods

A risk model incorporating lipid metabolism-related genes was established to stratify OS patients into high-risk and low-risk groups. Functional assays were conducted to assess the role of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in OS cell activities. Ultra-fast liquid chromatography-mass spectrometry was adopted to analyze the impact of HIBCH on OS cell metabolism. Moreover, the combined effect of HIBCH inhibitor SBF-1 with doxorubicin (DOX) was evaluated through in vitro studies and mouse xenograft models.

Results

HIBCH was identified as a key gene involved in the malignant behaviors of OS cells. HIBCH knockdown disrupted tricarboxylic acid (TCA) cycle activity and reduced oxidative phosphorylation in OS cells. SBF-1 showed synergistic effects with DOX in inhibiting malignant phenotypes of OS cells by modulating the Akt-mTOR pathway. In vivo experiments demonstrated that the combination of SBF-1 and DOX significantly suppressed tumor growth in mouse xenograft models.

Conclusions

This study reveals the critical role of lipid metabolism in OS progression and suggests a new therapeutic strategy against chemotherapy resistance in OS based on the synergistic combination of SBF-1 with DOX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型脂质代谢因子HIBCH抑制剂与阿霉素协同抑制骨肉瘤生长影响临床预后
骨肉瘤(OS)是一种高度恶性的原发性骨肿瘤,主要影响儿童和青少年。尽管治疗策略有了进步,但骨肉瘤的长期生存率仍然不利,特别是在晚期或复发病例中。新出现的证据表明脂质代谢失调参与了OS的进展,但具体机制尚不清楚。方法建立纳入脂质代谢相关基因的风险模型,将OS患者分为高危组和低危组。通过功能测定来评估3-羟基异丁基辅酶a水解酶(HIBCH)在OS细胞活性中的作用。采用超快速液相色谱-质谱法分析HIBCH对OS细胞代谢的影响。此外,通过体外研究和小鼠异种移植模型评估HIBCH抑制剂SBF-1与阿霉素(DOX)的联合作用。结果shibch是参与OS细胞恶性行为的关键基因。HIBCH的敲除破坏了OS细胞的三羧酸(TCA)循环活性并降低了氧化磷酸化。SBF-1通过调节Akt-mTOR通路,与DOX协同抑制OS细胞的恶性表型。体内实验表明,SBF-1和DOX联合使用可显著抑制小鼠异种移植瘤模型的肿瘤生长。结论本研究揭示了脂质代谢在OS进展中的关键作用,并提出了基于SBF-1与DOX协同联合治疗OS化疗耐药的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
期刊最新文献
Naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway. Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation. Medication related osteonecrosis (MRONJ) in the management of CTIBL in breast and prostate cancer patients. Joint report by SIPMO AND SIOMMMS. Mixed reality infrastructure based on deep learning medical image segmentation and 3D visualization for bone tumors using DCU-Net. Determinants of tumor necrosis and its impact on outcome in patients with Localized osteosarcoma uniformly treated with a response adapted regimen without high dose Methotrexate– A retrospective institutional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1