Organic Salt Buffer Layer Enables High-Performance NiOx-Based Inverted Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-10-06 DOI:10.1002/solr.202400534
Yun Wang, Qing Lian, Zhehan Ying, Yulan Huang, Dongyang Li, Ouwen Peng, Zhiyang Wu, Abbas Amini, Ning Wang, Wei Zhang, Chun Cheng
{"title":"Organic Salt Buffer Layer Enables High-Performance NiOx-Based Inverted Perovskite Solar Cells","authors":"Yun Wang,&nbsp;Qing Lian,&nbsp;Zhehan Ying,&nbsp;Yulan Huang,&nbsp;Dongyang Li,&nbsp;Ouwen Peng,&nbsp;Zhiyang Wu,&nbsp;Abbas Amini,&nbsp;Ning Wang,&nbsp;Wei Zhang,&nbsp;Chun Cheng","doi":"10.1002/solr.202400534","DOIUrl":null,"url":null,"abstract":"<p>\nThe merits of a low-cost fabrication process, suitable band structure, excellent wettability to perovskite precursor, and outstanding stability ensure NiO<sub><i>x</i></sub> as a hole transport material with beneficial characteristics to construct high-performance perovskite solar cells (PSCs). However, direct contact between perovskite and NiO<sub><i>x</i></sub> causes delamination and chemical instability and thus results in poor carrier transport and short device lifespan. Here, we propose a solution for this issue by introducing an organic salt additive 4-(trifluoromethyl) benzylammonium formate (TFMBAFa) in the perovskite precursor to passivate perovskite film and NiO<sub><i>x</i></sub>@(2-(3,6-dimethyl-9H-carbazol-9-yl) ethyl) phosphonic acid (Me-2PACz) composited hole transport layer (HTL), and thus construct a buffer layer between perovskite-HTL interface. The effective diminishing of NiO<sub><i>x</i></sub>/perovskite interfacial reactions and defects results in enhanced carrier transport. Consequently, the target device achieves simultaneous improvements in power conversion efficiency (24.2%), storage stability (T100 &gt; 1400 h), thermal stability (T80 &gt; 1000 h), and operational stability (T70 &gt; 850 h), where T100, T80, and T70 refer to the retention of 100%, 80%, and 70% of initial PCE, respectively. This work provides an effective strategy to advance the performance of NiO<sub><i>x</i></sub>-based inverted PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 22","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400534","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The merits of a low-cost fabrication process, suitable band structure, excellent wettability to perovskite precursor, and outstanding stability ensure NiOx as a hole transport material with beneficial characteristics to construct high-performance perovskite solar cells (PSCs). However, direct contact between perovskite and NiOx causes delamination and chemical instability and thus results in poor carrier transport and short device lifespan. Here, we propose a solution for this issue by introducing an organic salt additive 4-(trifluoromethyl) benzylammonium formate (TFMBAFa) in the perovskite precursor to passivate perovskite film and NiOx@(2-(3,6-dimethyl-9H-carbazol-9-yl) ethyl) phosphonic acid (Me-2PACz) composited hole transport layer (HTL), and thus construct a buffer layer between perovskite-HTL interface. The effective diminishing of NiOx/perovskite interfacial reactions and defects results in enhanced carrier transport. Consequently, the target device achieves simultaneous improvements in power conversion efficiency (24.2%), storage stability (T100 > 1400 h), thermal stability (T80 > 1000 h), and operational stability (T70 > 850 h), where T100, T80, and T70 refer to the retention of 100%, 80%, and 70% of initial PCE, respectively. This work provides an effective strategy to advance the performance of NiOx-based inverted PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机盐缓冲层实现高性能niox基倒置钙钛矿太阳能电池
低成本的制造工艺、合适的能带结构、优异的钙钛矿前驱体润湿性和优异的稳定性等优点,确保了NiOx作为一种空穴传输材料,具有构建高性能钙钛矿太阳能电池(PSCs)的有利特性。然而,钙钛矿与NiOx直接接触会导致分层和化学不稳定,从而导致载流子输运差和器件寿命短。本文提出了一种解决方案,在钙钛矿前驱体中引入有机盐添加剂4-(三氟甲基)甲酸苄铵(TFMBAFa),钝化钙钛矿薄膜和NiOx@(2-(3,6-二甲基- 9h -咔唑-9-基)乙基)膦酸(Me-2PACz)复合空穴传输层(HTL),从而在钙钛矿-HTL界面之间构建缓冲层。NiOx/钙钛矿界面反应和缺陷的有效减少导致载流子输运增强。因此,目标器件同时实现了功率转换效率(24.2%)、存储稳定性(T100 > 1400 h)、热稳定性(T80 > 1000 h)和运行稳定性(T70 > 850 h)的提高,其中T100、T80和T70分别表示初始PCE的保留率为100%、80%和70%。这项工作为提高基于niox的倒置psc的性能提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Cover Picture Issue Information Cover Picture Issue Information Minimizing Open-Circuit Voltage Losses in Perovskite/Perovskite/Silicon Triple-Junction Solar Cell with Optimized Top Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1