In Situ Welding Ionic Conductive Breakpoints for Highly Reversible All-Solid-State Lithium-Sulfur Batteries.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-29 DOI:10.1021/jacs.4c13126
Zhonghao Hu, Chuannan Geng, Jiwei Shi, Qiang Li, Haotian Yang, Mingyang Jiang, Li Wang, Quan-Hong Yang, Wei Lv
{"title":"In Situ Welding Ionic Conductive Breakpoints for Highly Reversible All-Solid-State Lithium-Sulfur Batteries.","authors":"Zhonghao Hu, Chuannan Geng, Jiwei Shi, Qiang Li, Haotian Yang, Mingyang Jiang, Li Wang, Quan-Hong Yang, Wei Lv","doi":"10.1021/jacs.4c13126","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur batteries (SSLSBs) have garnered considerable interest owing to their impressive energy density and high safety. However, the dissolved lithium polysulfide (LiPS) together with sluggish reaction kinetics disrupts the electrolyte network, bringing about ionic conductive breakpoints and severely limiting battery performance. To cure this, we propose an in situ welding strategy by introducing phosphorus pentasulfide (P<sub>2</sub>S<sub>5</sub>) as the welding filler into PEO-based solid cathodes. P<sub>2</sub>S<sub>5</sub> can react with LiPS to form ion-conducting lithium polysulfidophosphate (LSPS), which suppresses the interaction with PEO and in situ weld breakpoints within the ionic conductive network. Of interest, LSPS also shows another function, that is, to catalyze sulfur redox reactions by decreasing the activation energy of sulfur reduction reaction from 0.87 to 0.75 eV, mitigating the shuttle effect. The in situ welding strategy helps the assembled SSLSB to feature exceptional cycling stability and a high energy density of up to 358 Wh·kg<sup>-1</sup> due to the high sulfur utilization. Our findings pave an avenue for practical high-performance SSLSBs with a novel welding filler for in situ welding of ionic conductive network.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur batteries (SSLSBs) have garnered considerable interest owing to their impressive energy density and high safety. However, the dissolved lithium polysulfide (LiPS) together with sluggish reaction kinetics disrupts the electrolyte network, bringing about ionic conductive breakpoints and severely limiting battery performance. To cure this, we propose an in situ welding strategy by introducing phosphorus pentasulfide (P2S5) as the welding filler into PEO-based solid cathodes. P2S5 can react with LiPS to form ion-conducting lithium polysulfidophosphate (LSPS), which suppresses the interaction with PEO and in situ weld breakpoints within the ionic conductive network. Of interest, LSPS also shows another function, that is, to catalyze sulfur redox reactions by decreasing the activation energy of sulfur reduction reaction from 0.87 to 0.75 eV, mitigating the shuttle effect. The in situ welding strategy helps the assembled SSLSB to feature exceptional cycling stability and a high energy density of up to 358 Wh·kg-1 due to the high sulfur utilization. Our findings pave an avenue for practical high-performance SSLSBs with a novel welding filler for in situ welding of ionic conductive network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Gold/HNTf2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones Above-Room-Temperature Ferromagnetism Regulation in Two-Dimensional Heterostructures by van der Waals Interfacial Magnetochemistry Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments Bioorthogonal Activation of Deep Red Photoredox Catalysis Inducing Pyroptosis Biosynthesis-Encoded Lipogenic Acetyl-CoA Measurement Using NMR Reveals Glucose-Driven Lipogenesis and Glutamine's Alternative Roles in Kidney Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1