Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Marine Biotechnology Pub Date : 2024-11-29 DOI:10.1007/s10126-024-10382-0
Jiahui Zhang, Zhe Liu, Jinqiang Quan, Junhao Lu, Guiyan Zhao, Yucai Pan
{"title":"Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress","authors":"Jiahui Zhang,&nbsp;Zhe Liu,&nbsp;Jinqiang Quan,&nbsp;Junhao Lu,&nbsp;Guiyan Zhao,&nbsp;Yucai Pan","doi":"10.1007/s10126-024-10382-0","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10382-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
期刊最新文献
Biodegradation of Di-2-Ethylhexyl Phthalate by Mangrove Sediment Microbiome Impacted by Chronic Plastic Waste Establishment of Nile Tilapia Primary Cell Culture Methods and In Vitro Cell Knockdown Techniques Transcriptome Reveals Molecular Mechanisms of Neuroendocrine Regulation of Allometric Growth in the Red Swamp Crayfish Procambarus clarkii Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress Transcriptome Analysis Reveals the lncRNA-mRNA Co-expression Network Regulating the Aestivation of Sea Cucumber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1