Preparation and characterizations of chitosan-octanoate nanoparticles for efficient delivery of curcumin into prostate cancer cells.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.1007/s13205-024-04157-6
Ahmad Bani-Jaber, Safaa Taha, Rana Abu-Dahab, Samaa Abdullah, Dina El-Sabawi, Alaa A Al-Masud, Alhassan H Aodah, Abeer A Altamimi
{"title":"Preparation and characterizations of chitosan-octanoate nanoparticles for efficient delivery of curcumin into prostate cancer cells.","authors":"Ahmad Bani-Jaber, Safaa Taha, Rana Abu-Dahab, Samaa Abdullah, Dina El-Sabawi, Alaa A Al-Masud, Alhassan H Aodah, Abeer A Altamimi","doi":"10.1007/s13205-024-04157-6","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of the research was to develop a hydrophobic octanoate salt of chitosan (CS-OA) and use the salt as a nanoparticle platform for the delivery of curcumin (CUR) into prostate cancer cells. The nanoprecipitation technique was used to prepare the nanoparticles, which were measured for particle size and encapsulation efficacy relative to CUR-CS nanoparticles. The cytotoxicity of CUR-OA-CS nanoparticles was evaluated in prostate cancerous cells (PC3 and DU145) in comparison with the corresponding blank nanoparticles and hydroalcoholic CUR solution. PXRD, SEM, and TEM were also used to examine the CUR-CS-OA nanoparticles. The average diameters of the CUR-CS-OA and CUR-CS nanoparticles were 268.90 ± 3.77 nm and 221.90 ± 2.79 nm, respectively, with encapsulation efficiencies of 61.37 ± 1.70% and 60.20 ± 3.17%. PXRD and SEM suggested CUR amorphization in the CS-OA nanoparticles. The void nanoparticles exhibited concentration-dependent antiproliferative action, which was attributed to the cellular uptake of CS. CUR loading into these nanoparticles increased their cytotoxicity even more. The potential of CS-OA nanoparticles as a special delivery system for additional cytotoxic drugs into different malignant cells can be further explored.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"315"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04157-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the research was to develop a hydrophobic octanoate salt of chitosan (CS-OA) and use the salt as a nanoparticle platform for the delivery of curcumin (CUR) into prostate cancer cells. The nanoprecipitation technique was used to prepare the nanoparticles, which were measured for particle size and encapsulation efficacy relative to CUR-CS nanoparticles. The cytotoxicity of CUR-OA-CS nanoparticles was evaluated in prostate cancerous cells (PC3 and DU145) in comparison with the corresponding blank nanoparticles and hydroalcoholic CUR solution. PXRD, SEM, and TEM were also used to examine the CUR-CS-OA nanoparticles. The average diameters of the CUR-CS-OA and CUR-CS nanoparticles were 268.90 ± 3.77 nm and 221.90 ± 2.79 nm, respectively, with encapsulation efficiencies of 61.37 ± 1.70% and 60.20 ± 3.17%. PXRD and SEM suggested CUR amorphization in the CS-OA nanoparticles. The void nanoparticles exhibited concentration-dependent antiproliferative action, which was attributed to the cellular uptake of CS. CUR loading into these nanoparticles increased their cytotoxicity even more. The potential of CS-OA nanoparticles as a special delivery system for additional cytotoxic drugs into different malignant cells can be further explored.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖-辛酸盐纳米颗粒的制备和表征,用于有效地将姜黄素输送到前列腺癌细胞。
该研究的目标是开发一种疏水的壳聚糖辛酸盐(CS-OA),并将这种盐作为纳米粒子平台,将姜黄素(CUR)输送到前列腺癌细胞中。采用纳米沉淀法制备了纳米颗粒,并对其粒径和包封效果进行了测定。在前列腺癌细胞(PC3和DU145)中,与相应的空白纳米颗粒和氢酒精CUR溶液比较,评估了CUR- oa - cs纳米颗粒的细胞毒性。采用PXRD、SEM和TEM对cu - cs - oa纳米颗粒进行了表征。cu - cs - oa和cu - cs纳米颗粒的平均直径分别为268.90±3.77 nm和221.90±2.79 nm,包封效率分别为61.37±1.70%和60.20±3.17%。PXRD和SEM分析表明,CS-OA纳米颗粒存在CUR非晶化现象。空洞纳米颗粒表现出浓度依赖性的抗增殖作用,这归因于细胞对CS的摄取。将CUR装入这些纳米颗粒中会进一步增加它们的细胞毒性。CS-OA纳米颗粒作为附加细胞毒性药物进入不同恶性细胞的特殊递送系统的潜力可以进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
期刊最新文献
Biocontrol efficacy of native Metarhizium rileyi (Hypocreales: Clavicipitaceae) isolates against Spodoptera litura (F) (Lepidoptera: Noctuidae) and in silico effect of the secondary metabolites against the virulent proteins of the insect. Evaluation of a chloroquine hydrogel for topical treatment of leishmaniasis in BALB/c mice infected with Leishmania (L.) amazonensis. Exploring the therapeutic potential of oleanolic acid and its derivatives in cancer treatment: a comprehensive review. Potential of Streptomyces rochei 8ER183 for poly(lactic acid)-degrading enzyme production, biodegradative capability, and its whole-genome sequence characterization. Relevance of proteomics and metabolomics approaches to overview the tumorigenesis and better management of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1