{"title":"Suppression of Dad1 induces cardiomyocyte death by weakening cell adhesion.","authors":"Shota Mori, Rumi Kimura, Hirofumi Morihara, Masashi Tomimatsu, Shota Fuchigami, Kotaro Matsumoto, Shota Tanaka, Yoshiaki Okada, Makiko Maeda, Masanori Obana, Yasushi Fujio","doi":"10.1152/ajpcell.00509.2024","DOIUrl":null,"url":null,"abstract":"<p><p>As cardiomyocyte loss causes heart failure, inhibition of cardiomyocyte death may be a therapeutic strategy against heart failure. In this study, we have identified defender against cell death 1 (Dad1) as a candidate regulator of cardiomyocyte death, using complementary DNA microarray and siRNA knockdown screening. Dad1 is a subunit of oligosaccharyltransferase (OST) complex that is responsible for protein N-glycosylation; however, its function in cardiomyocytes remains unknown. Importantly, the knockdown of Dad1 using siRNA reduced the viability of neonatal rat cardiomyocytes (NRCMs), accompanied by cleaved caspase3 expression, independent of endoplasmic reticulum stress. Dad1 knockdown impaired cell spreading and reduced myofibrillogenesis in NRCMs, suggesting that Dad1 knockdown induced anoikis, apoptosis by disrupting cell-matrix interactions. Consistently, knockdown of Dad1 impaired N-glycosylation of integrins α5 and β1, accompanied by inactivation of focal adhesion kinase. When cell adhesion was enhanced using adhesamine, fibronectin, or collagen type IV, cardiomyocyte death induced by Dad1 knockdown was reduced. Dad1 knockdown decreased the expression of staurosporine and temperature-sensitive 3 A (Stt3A), a catalytic subunit of OST complex. Interestingly, Stt3A knockdown using Stt3A siRNA reduced the expression of Dad1, indicating that both Dad1 and Stt3A were required for OST stabilization. In conclusion, Dad1 plays an important role in maintaining the expression of mature N-glycosylated integrins and their downstream signaling molecules to suppress cardiomyocyte anoikis.<b>NEW & NOTEWORTHY</b> This study found for the first time that the knockdown of Dad1 induced cardiomyocyte death, accompanied by impairment of myofibrillogenesis and cell spreading. Dad1 regulates the N-glycosylation of integrins in cooperation with Stt3A and preserves cell adhesion activity, promoting cardiomyocyte survival. This is the first demonstration that Dad1 contributes to the maintenance of cardiac homeostasis through the posttranslational modification of integrins, providing a novel insight into the biological significance of OST complex in cardiomyocytes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C95-C106"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00509.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As cardiomyocyte loss causes heart failure, inhibition of cardiomyocyte death may be a therapeutic strategy against heart failure. In this study, we have identified defender against cell death 1 (Dad1) as a candidate regulator of cardiomyocyte death, using complementary DNA microarray and siRNA knockdown screening. Dad1 is a subunit of oligosaccharyltransferase (OST) complex that is responsible for protein N-glycosylation; however, its function in cardiomyocytes remains unknown. Importantly, the knockdown of Dad1 using siRNA reduced the viability of neonatal rat cardiomyocytes (NRCMs), accompanied by cleaved caspase3 expression, independent of endoplasmic reticulum stress. Dad1 knockdown impaired cell spreading and reduced myofibrillogenesis in NRCMs, suggesting that Dad1 knockdown induced anoikis, apoptosis by disrupting cell-matrix interactions. Consistently, knockdown of Dad1 impaired N-glycosylation of integrins α5 and β1, accompanied by inactivation of focal adhesion kinase. When cell adhesion was enhanced using adhesamine, fibronectin, or collagen type IV, cardiomyocyte death induced by Dad1 knockdown was reduced. Dad1 knockdown decreased the expression of staurosporine and temperature-sensitive 3 A (Stt3A), a catalytic subunit of OST complex. Interestingly, Stt3A knockdown using Stt3A siRNA reduced the expression of Dad1, indicating that both Dad1 and Stt3A were required for OST stabilization. In conclusion, Dad1 plays an important role in maintaining the expression of mature N-glycosylated integrins and their downstream signaling molecules to suppress cardiomyocyte anoikis.NEW & NOTEWORTHY This study found for the first time that the knockdown of Dad1 induced cardiomyocyte death, accompanied by impairment of myofibrillogenesis and cell spreading. Dad1 regulates the N-glycosylation of integrins in cooperation with Stt3A and preserves cell adhesion activity, promoting cardiomyocyte survival. This is the first demonstration that Dad1 contributes to the maintenance of cardiac homeostasis through the posttranslational modification of integrins, providing a novel insight into the biological significance of OST complex in cardiomyocytes.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.