Effects of carbon black particles on human monocyte-derived macrophages: type-dependent pro-inflammatory activation in vitro.

IF 4.8 2区 医学 Q1 TOXICOLOGY Archives of Toxicology Pub Date : 2024-11-29 DOI:10.1007/s00204-024-03909-w
Justina Pajarskienė, Agnė Vailionytė, Ieva Uogintė, Steigvilė Byčenkienė, Ugnė Jonavičė, Ilona Uzielienė, Edvardas Bagdonas, Rūta Aldonytė
{"title":"Effects of carbon black particles on human monocyte-derived macrophages: type-dependent pro-inflammatory activation in vitro.","authors":"Justina Pajarskienė, Agnė Vailionytė, Ieva Uogintė, Steigvilė Byčenkienė, Ugnė Jonavičė, Ilona Uzielienė, Edvardas Bagdonas, Rūta Aldonytė","doi":"10.1007/s00204-024-03909-w","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon black is a key component of air-borne particulate matter, linked to adverse health outcomes, such as increased susceptibility to respiratory infections and chronic pulmonary disease exacerbations. Fine and ultrafine particles can penetrate the lungs, enter the bloodstream, and induce pathogenetic events. Macrophages play a crucial role in responding to inhaled particles, including carbon black, by initiating an innate immune response and upregulating pro-inflammatory cytokines and anti-oxidative enzymes. This study investigates the effects of carbon black particles on human monocyte-derived macrophages in vitro at a concentration of 10 µg/ml, offering insights into their potential role in disease pathogenesis. We have compared two commercially available carbon black particle types using various physicochemical techniques and assessed their biological effects on monocyte-derived macrophages. We have evaluated changes in cell viability, morphology, and particle uptake/phagocytosis. Western blot, ELISA, and RT-qPCR measured inflammatory and oxidative stress biomarkers. Both types of carbon black particles induced similar responses in macrophages, including particle uptake, cytokine production, and oxidative stress-related protein expression. The observed changes suggest activation of the Nrf2-mediated antioxidant response, impaired autophagy, and decreased cellular defense against oxidative stress, indicating potential pathways for chronic inflammatory lung disease development.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-024-03909-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon black is a key component of air-borne particulate matter, linked to adverse health outcomes, such as increased susceptibility to respiratory infections and chronic pulmonary disease exacerbations. Fine and ultrafine particles can penetrate the lungs, enter the bloodstream, and induce pathogenetic events. Macrophages play a crucial role in responding to inhaled particles, including carbon black, by initiating an innate immune response and upregulating pro-inflammatory cytokines and anti-oxidative enzymes. This study investigates the effects of carbon black particles on human monocyte-derived macrophages in vitro at a concentration of 10 µg/ml, offering insights into their potential role in disease pathogenesis. We have compared two commercially available carbon black particle types using various physicochemical techniques and assessed their biological effects on monocyte-derived macrophages. We have evaluated changes in cell viability, morphology, and particle uptake/phagocytosis. Western blot, ELISA, and RT-qPCR measured inflammatory and oxidative stress biomarkers. Both types of carbon black particles induced similar responses in macrophages, including particle uptake, cytokine production, and oxidative stress-related protein expression. The observed changes suggest activation of the Nrf2-mediated antioxidant response, impaired autophagy, and decreased cellular defense against oxidative stress, indicating potential pathways for chronic inflammatory lung disease development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
期刊最新文献
Effects of carbon black particles on human monocyte-derived macrophages: type-dependent pro-inflammatory activation in vitro. High molecular weight polycyclic aromatic hydrocarbon (HMW-PAH) isomers: unveiling distinct toxic effects from cytotoxicity to oxidative stress-induced DNA damage. Toxicokinetics of benzotriazole UV stabilizer UV-P in humans after single oral administration. Sepsis-induced cardiomyopathy: understanding pathophysiology and clinical implications. Heavy metals: toxicity and human health effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1