Biosafety and pharmacokinetic characteristics of polyethylene pyrrolidone modified nano selenium in rats.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Biotechnology Pub Date : 2024-11-28 DOI:10.1186/s12896-024-00915-9
Wei Li, Xianzhou Lu, Liangjun Jiang, Xiangjiang Wang
{"title":"Biosafety and pharmacokinetic characteristics of polyethylene pyrrolidone modified nano selenium in rats.","authors":"Wei Li, Xianzhou Lu, Liangjun Jiang, Xiangjiang Wang","doi":"10.1186/s12896-024-00915-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the biocompatibility and pharmacokinetic characteristics of polyvinyl pyrrolidone-modified selenium nanoparticles (PVP-Se NPs). Understanding the biosafety of PVP-Se NPs is crucial due to their potential applications in mitigating oxidative stress-related diseases and improving drug delivery systems.</p><p><strong>Methods: </strong>Selenium nanoparticles were prepared using a sodium selenite solution, followed by PVP modification. Particle size analysis was conducted using dynamic light scattering (DLS), and particle morphology was observed using transmission electron microscopy (TEM). Different concentrations of PVP-Se NPs were intraperitoneally injected into SD rats, and the survival rate was observed. Liver and kidney tissues, urine, feces, and blood samples were collected at the highest safe dose, and the concentration of selenium ions was measured.</p><p><strong>Results: </strong>The average particle size of PVP-Se NPs was 278.4 ± 124.8 nm, exhibiting a semi-spherical shape. The maximum safe dose of PVP-Se NPs for intraperitoneal injection in rats was approximately 320 µg/kg. At this dose, the content of PVP-Se NPs significantly increased in the liver and kidney tissues from day 1 to day 3, in urine and feces during the first 8 h, and in blood during the first 2 h, followed by a gradual decrease.</p><p><strong>Conclusion: </strong>When administered at a safe dose, PVP-Se NPs do not damage liver and kidney tissues and can be eliminated from the body through liver and kidney metabolism without accumulation.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"98"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00915-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to investigate the biocompatibility and pharmacokinetic characteristics of polyvinyl pyrrolidone-modified selenium nanoparticles (PVP-Se NPs). Understanding the biosafety of PVP-Se NPs is crucial due to their potential applications in mitigating oxidative stress-related diseases and improving drug delivery systems.

Methods: Selenium nanoparticles were prepared using a sodium selenite solution, followed by PVP modification. Particle size analysis was conducted using dynamic light scattering (DLS), and particle morphology was observed using transmission electron microscopy (TEM). Different concentrations of PVP-Se NPs were intraperitoneally injected into SD rats, and the survival rate was observed. Liver and kidney tissues, urine, feces, and blood samples were collected at the highest safe dose, and the concentration of selenium ions was measured.

Results: The average particle size of PVP-Se NPs was 278.4 ± 124.8 nm, exhibiting a semi-spherical shape. The maximum safe dose of PVP-Se NPs for intraperitoneal injection in rats was approximately 320 µg/kg. At this dose, the content of PVP-Se NPs significantly increased in the liver and kidney tissues from day 1 to day 3, in urine and feces during the first 8 h, and in blood during the first 2 h, followed by a gradual decrease.

Conclusion: When administered at a safe dose, PVP-Se NPs do not damage liver and kidney tissues and can be eliminated from the body through liver and kidney metabolism without accumulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biotechnology
BMC Biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.60
自引率
0.00%
发文量
34
审稿时长
2 months
期刊介绍: BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.
期刊最新文献
Control of hyperhydricity of Pistacia khinjuk stocks in vitro shoots. Biosafety and pharmacokinetic characteristics of polyethylene pyrrolidone modified nano selenium in rats. Organosolv-derived lipids from hemicellulose and cellulose, and pre-extracted tannins as additives upon hydrothermal liquefaction (HTL) of spruce bark lignins to bio-oil. Enhanced extracellular production of Coprinopsis cinerea laccase Lcc9 in Aspergillus niger by gene expression cassette and bioprocess optimization. UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1