Carbonic anhydrase 2 facilitates sorafenib resistance by counteracting MCT4-mediated intracellular pH dysregulation in HCC.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2024-12-24 Epub Date: 2024-11-27 DOI:10.1016/j.celrep.2024.114996
Hui Lu, Huiya Liu, Ronghui Yan, Wenhao Ma, Haiying Liu, Rui Liu, Yuchen Sun, Ling Ye, Ping Gao, Weidong Jia, Pinggen Zhang, Huafeng Zhang
{"title":"Carbonic anhydrase 2 facilitates sorafenib resistance by counteracting MCT4-mediated intracellular pH dysregulation in HCC.","authors":"Hui Lu, Huiya Liu, Ronghui Yan, Wenhao Ma, Haiying Liu, Rui Liu, Yuchen Sun, Ling Ye, Ping Gao, Weidong Jia, Pinggen Zhang, Huafeng Zhang","doi":"10.1016/j.celrep.2024.114996","DOIUrl":null,"url":null,"abstract":"<p><p>Sorafenib, the targeted therapy for hepatocellular carcinoma (HCC), has been utilized in clinics for over a decade. However, its effectiveness is severely hindered by acquired drug resistance, the mechanisms of which remain largely elusive. In this study, we identify that carbonic anhydrase 2 (CA2) is a key regulator of sorafenib resistance. Mechanistically, sorafenib treatment decreases intracellular pH (pH<sub>i</sub>) by suppressing monocarboxylate transporter 4 (MCT4) expression, while high levels of CA2 counteract MCT4-mediated pH<sub>i</sub> dysregulation upon sorafenib treatment, maintaining pH<sub>i</sub> homeostasis to facilitate cell survival and sorafenib resistance. Targeting CA2 re-sensitizes resistant HCC cells to sorafenib both in vitro and in vivo. Importantly, analysis of clinical samples shows a strong correlation between CA2 expression levels and the therapeutic efficacy of sorafenib in HCC patients. Our findings highlight the significance of CA2 in facilitating sorafenib resistance and propose targeting CA2 as a potential strategy for overcoming sorafenib resistance in HCC patients.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 12","pages":"114996"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114996","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sorafenib, the targeted therapy for hepatocellular carcinoma (HCC), has been utilized in clinics for over a decade. However, its effectiveness is severely hindered by acquired drug resistance, the mechanisms of which remain largely elusive. In this study, we identify that carbonic anhydrase 2 (CA2) is a key regulator of sorafenib resistance. Mechanistically, sorafenib treatment decreases intracellular pH (pHi) by suppressing monocarboxylate transporter 4 (MCT4) expression, while high levels of CA2 counteract MCT4-mediated pHi dysregulation upon sorafenib treatment, maintaining pHi homeostasis to facilitate cell survival and sorafenib resistance. Targeting CA2 re-sensitizes resistant HCC cells to sorafenib both in vitro and in vivo. Importantly, analysis of clinical samples shows a strong correlation between CA2 expression levels and the therapeutic efficacy of sorafenib in HCC patients. Our findings highlight the significance of CA2 in facilitating sorafenib resistance and propose targeting CA2 as a potential strategy for overcoming sorafenib resistance in HCC patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation. mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase. C9ORF72 poly-PR induces TDP-43 nuclear condensation via NEAT1 and is modulated by HSP70 activity. A conserved switch to less catalytically active Polycomb repressive complexes in non-dividing cells. IL-7 promotes integrated glucose and amino acid sensing during homeostatic CD4+ T cell proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1