Minji Kang, Sang Ho Yoon, Minkyung Kang, Seung Pyo Park, Woo Seok Song, Jungho Kim, Seungha Lee, Da-Ha Park, Jae-Man Song, Beomsue Kim, Kyung Hee Park, Eun-Hye Joe, Hyun Goo Woo, Seong Hoe Park, Bong-Kiun Kaang, Dohyun Han, Yong-Seok Lee, Myoung-Hwan Kim, Young Ho Suh
{"title":"Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.","authors":"Minji Kang, Sang Ho Yoon, Minkyung Kang, Seung Pyo Park, Woo Seok Song, Jungho Kim, Seungha Lee, Da-Ha Park, Jae-Man Song, Beomsue Kim, Kyung Hee Park, Eun-Hye Joe, Hyun Goo Woo, Seong Hoe Park, Bong-Kiun Kaang, Dohyun Han, Yong-Seok Lee, Myoung-Hwan Kim, Young Ho Suh","doi":"10.1016/j.celrep.2024.115155","DOIUrl":null,"url":null,"abstract":"<p><p>Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses. We demonstrate that Cd99l2 inversely regulates the expression of immediate-early genes (IEGs), including Arc, Egr1, and c-Fos, by inhibiting the activity of the transcription factors CREB and SRF. Neuronal inactivation increases the transport of Cd99l2 to the cell surface from recycling endosomes, thereby enhancing Cd99l2-mediated inhibitory signaling. Additionally, Cd99l2 knockout mice exhibit impaired excitatory synaptic transmission and plasticity in the hippocampus, along with deficits in spatial memory and contextual fear conditioning. Based on these findings, we propose that neuronal Cd99l2 functions as a synaptic cell adhesion molecule that inversely controls neuronal activation.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115155"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115155","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses. We demonstrate that Cd99l2 inversely regulates the expression of immediate-early genes (IEGs), including Arc, Egr1, and c-Fos, by inhibiting the activity of the transcription factors CREB and SRF. Neuronal inactivation increases the transport of Cd99l2 to the cell surface from recycling endosomes, thereby enhancing Cd99l2-mediated inhibitory signaling. Additionally, Cd99l2 knockout mice exhibit impaired excitatory synaptic transmission and plasticity in the hippocampus, along with deficits in spatial memory and contextual fear conditioning. Based on these findings, we propose that neuronal Cd99l2 functions as a synaptic cell adhesion molecule that inversely controls neuronal activation.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.