{"title":"Luminescence Mechanisms of Quaternary Zn-Ag-In-S Nanocrystals: ZnS:Ag, In or AgInS2:Zn?","authors":"Hikari Fujiki, Yasushi Hamanaka, Shijia Chen, Toshihiro Kuzuya","doi":"10.1002/cphc.202400316","DOIUrl":null,"url":null,"abstract":"<p><p>Highly emissive Zn-Ag-In-S nanocrystals have attracted attention as derivatives of I-III-VI2-type nanocrystals without the use of toxic elements. The wide tunability of their luminescence wavelengths is attributed to the controllable bandgap of the solid solution between ZnS and AgInS2. However, enhancement of the photoluminescence quantum yield (PL-QY) depending on the chemical composition has not been elucidated. Here, the luminescence mechanisms of Zn-Ag-In-S nanocrystals were studied from the perspective of ZnS doped with Ag and In, although previous research has proposed a hypothesis that Zn is a radiative recombination centre in the AgInS2 host. The Zn-Ag-In-S nanocrystals were synthesized by systematically varying the Zn, Ag, and In contents. The nanocrystals exhibit a structure in which a part of the Zn in the cubic ZnS is substituted with Ag and In. Luminescence was ascribed to a donor-acceptor pair (DAP) recombination between electrons trapped in In donors and holes trapped in Ag acceptors. The composition-dependent enhancement of PL-QYs was attributed to an increase in donor and acceptor concentrations. The DAP characteristics were maintained over a wide range of Ag and In contents because of the localized character of the band edge states dominated by Ag and In orbitals, as suggested formerly by simulation.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400316"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400316","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly emissive Zn-Ag-In-S nanocrystals have attracted attention as derivatives of I-III-VI2-type nanocrystals without the use of toxic elements. The wide tunability of their luminescence wavelengths is attributed to the controllable bandgap of the solid solution between ZnS and AgInS2. However, enhancement of the photoluminescence quantum yield (PL-QY) depending on the chemical composition has not been elucidated. Here, the luminescence mechanisms of Zn-Ag-In-S nanocrystals were studied from the perspective of ZnS doped with Ag and In, although previous research has proposed a hypothesis that Zn is a radiative recombination centre in the AgInS2 host. The Zn-Ag-In-S nanocrystals were synthesized by systematically varying the Zn, Ag, and In contents. The nanocrystals exhibit a structure in which a part of the Zn in the cubic ZnS is substituted with Ag and In. Luminescence was ascribed to a donor-acceptor pair (DAP) recombination between electrons trapped in In donors and holes trapped in Ag acceptors. The composition-dependent enhancement of PL-QYs was attributed to an increase in donor and acceptor concentrations. The DAP characteristics were maintained over a wide range of Ag and In contents because of the localized character of the band edge states dominated by Ag and In orbitals, as suggested formerly by simulation.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.