Energy metabolism in osteoprogenitors and osteoblasts: role of the Pentose Phosphate Pathway.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-11-26 DOI:10.1016/j.jbc.2024.108016
Sarah E Catheline, Charles O Smith, Matthew McArthur, Chen Yu, Paul S Brookes, Roman A Eliseev
{"title":"Energy metabolism in osteoprogenitors and osteoblasts: role of the Pentose Phosphate Pathway.","authors":"Sarah E Catheline, Charles O Smith, Matthew McArthur, Chen Yu, Paul S Brookes, Roman A Eliseev","doi":"10.1016/j.jbc.2024.108016","DOIUrl":null,"url":null,"abstract":"<p><p>Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OB), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of <sup>13</sup>C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSC) and BMSC-derived OBs. Glucose tracing showed non-canonical direction of glucose metabolism with high labeling of early glycolytic steps and the Pentose Phosphate Pathway (PPP) but very low labeling of late glycolytic steps and the Krebs cycle. Labeling of Krebs cycle and late steps of glycolysis was primarily from glutamine. These data suggest that in osteolineage cells, glucose is metabolized primarily via the PPP while glutamine is metabolized in the mitochondria, also feeding into the late steps of glycolysis likely via the malate-aspartate shuttle (MAS). This metabolic setup did not change after induction of differentiation. To evaluate the importance of this setup for osteolineage cells, we used the inhibitors of either PPP or MAS and observed a significant reduction in both cell growth and ability to differentiate. In sum, we observed a distinct metabolic wiring in osteolineage cells with high flux of glucose through the PPP and glutamine flux fueling both mitochondria and late steps of glycolysis. This wiring likely reflects their unique capacity to rapidly proliferate and produce extracellular matrix, e.g. after bone fracture.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108016"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OB), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of 13C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSC) and BMSC-derived OBs. Glucose tracing showed non-canonical direction of glucose metabolism with high labeling of early glycolytic steps and the Pentose Phosphate Pathway (PPP) but very low labeling of late glycolytic steps and the Krebs cycle. Labeling of Krebs cycle and late steps of glycolysis was primarily from glutamine. These data suggest that in osteolineage cells, glucose is metabolized primarily via the PPP while glutamine is metabolized in the mitochondria, also feeding into the late steps of glycolysis likely via the malate-aspartate shuttle (MAS). This metabolic setup did not change after induction of differentiation. To evaluate the importance of this setup for osteolineage cells, we used the inhibitors of either PPP or MAS and observed a significant reduction in both cell growth and ability to differentiate. In sum, we observed a distinct metabolic wiring in osteolineage cells with high flux of glucose through the PPP and glutamine flux fueling both mitochondria and late steps of glycolysis. This wiring likely reflects their unique capacity to rapidly proliferate and produce extracellular matrix, e.g. after bone fracture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
E2F1 and E2F7 regulate gastric cancer cell proliferation respectively through transcriptional activation and transcriptional repression of MYBL2. Chelerythrine triggers the prolongation of QT interval and induces cardiotoxicity by promoting the degradation of hERG channels. Energy metabolism in osteoprogenitors and osteoblasts: role of the Pentose Phosphate Pathway. Independent evolution of plant natural products: Formation of benzoxazinoids in Consolida orientalis (Ranunculaceae). Molecular determinants of the selectivity and potency of α-conotoxin Vc1.1 for human nicotinic acetylcholine receptors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1