The Ras-related nuclear GTPase RAN1 ensures pollen size and tube growth via maintaining actin cytoskeleton.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Journal of cell science Pub Date : 2024-11-29 DOI:10.1242/jcs.261920
Yihao Li, Yuwan Zhao, Haining Zhang, Peiwei Liu, Haiyun Ren
{"title":"The Ras-related nuclear GTPase RAN1 ensures pollen size and tube growth via maintaining actin cytoskeleton.","authors":"Yihao Li, Yuwan Zhao, Haining Zhang, Peiwei Liu, Haiyun Ren","doi":"10.1242/jcs.261920","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling organ size in plants is a complex biological process influenced by various factors, including gene expression, genome ploidy, and environmental conditions. Despite its importance for plant growth and development, the mechanisms underlying organ size regulation remain unknown. Here, we investigated the role of RAN1, a member of the Ras-related nuclear GTPases family, in regulating pollen size. A RAN1 knockdown mutant (ran1-1) exhibited a significant reduction in pollen size, accompanied by impaired germination and reduced pollen tube growth. RAN1 mutation caused disruptions in actin filament organization such as aberrant structure of actin collar due to the dysregulation of actin-binding proteins expression. Furthermore, we identified the transcription activator SHB1 (SHORT HYPOCOTYL UNDER BLUE1), whose mutation showed similar but milder phenotypes in pollens compared to ran1-1. Genetic evidence suggested SHB1 acts downstream of RAN1. Transient expression assays in leaves showed that SHB1 was largely retained in the cytoplasm of the ran1-1 mutant, potentially affecting the expression of actin-binding proteins. These findings highlight the pivotal role of RAN1 in modulating pollen size and development, providing valuable insights into cell size regulation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.261920","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling organ size in plants is a complex biological process influenced by various factors, including gene expression, genome ploidy, and environmental conditions. Despite its importance for plant growth and development, the mechanisms underlying organ size regulation remain unknown. Here, we investigated the role of RAN1, a member of the Ras-related nuclear GTPases family, in regulating pollen size. A RAN1 knockdown mutant (ran1-1) exhibited a significant reduction in pollen size, accompanied by impaired germination and reduced pollen tube growth. RAN1 mutation caused disruptions in actin filament organization such as aberrant structure of actin collar due to the dysregulation of actin-binding proteins expression. Furthermore, we identified the transcription activator SHB1 (SHORT HYPOCOTYL UNDER BLUE1), whose mutation showed similar but milder phenotypes in pollens compared to ran1-1. Genetic evidence suggested SHB1 acts downstream of RAN1. Transient expression assays in leaves showed that SHB1 was largely retained in the cytoplasm of the ran1-1 mutant, potentially affecting the expression of actin-binding proteins. These findings highlight the pivotal role of RAN1 in modulating pollen size and development, providing valuable insights into cell size regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与 Ras 相关的核 GTPase RAN1 可通过维持肌动蛋白细胞骨架来确保花粉的大小和花粉管的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
期刊最新文献
The Ras-related nuclear GTPase RAN1 ensures pollen size and tube growth via maintaining actin cytoskeleton. PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation. Phosphorylation on serine 72 modulates Rab7A palmitoylation and retromer recruitment. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. Regulation of MiR-206 in denervated and dystrophic muscles and its effect on AChR clustering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1