Prime editing: therapeutic advances and mechanistic insights.

IF 4.6 3区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Gene Therapy Pub Date : 2024-11-28 DOI:10.1038/s41434-024-00499-1
Joss B Murray, Patrick T Harrison, Janine Scholefield
{"title":"Prime editing: therapeutic advances and mechanistic insights.","authors":"Joss B Murray, Patrick T Harrison, Janine Scholefield","doi":"10.1038/s41434-024-00499-1","DOIUrl":null,"url":null,"abstract":"<p><p>We are often confronted with a simple question, \"which gene editing technique is the best?\"; the simple answer is \"there isn't one\". In 2021, a year after prime editing first made its mark, we evaluated the landscape of this potentially transformative advance in genome engineering towards getting treatments to the clinic [1]. Nearly 20% of the papers we cited were still in pre-print at the time which serves to indicate how early-stage the knowledge base was at that time. Now, three years later, we take a look at the landscape and ask what has been learnt to ensure this tech is broadly accessible, highlighting some key advances, especially those that push this towards the clinic. A big part of the appeal of prime editing is its ability to precisely edit DNA without double stranded breaks, and to install any of the 12 possible single-nucleotide conversion events as well as small insertions and/or deletions, or essentially any combination thereof. Over the last few decades, other transformative and Nobel prize-winning technologies that rely on Watson-Crick base-pairing such as PCR, site-directed mutagenesis, RNA interference, and one might say, \"classic\" CRISPR, were swiftly adopted across labs around the world because of the speed with which mechanistic rules governing their efficiency were determined. Whilst this perspective focuses on the context of gene therapy applications of prime editing, we also further look at the recent studies which have increased our understanding of the mechanism of PEs and simultaneously improved the efficiency and diversity of the PE toolbox.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-024-00499-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We are often confronted with a simple question, "which gene editing technique is the best?"; the simple answer is "there isn't one". In 2021, a year after prime editing first made its mark, we evaluated the landscape of this potentially transformative advance in genome engineering towards getting treatments to the clinic [1]. Nearly 20% of the papers we cited were still in pre-print at the time which serves to indicate how early-stage the knowledge base was at that time. Now, three years later, we take a look at the landscape and ask what has been learnt to ensure this tech is broadly accessible, highlighting some key advances, especially those that push this towards the clinic. A big part of the appeal of prime editing is its ability to precisely edit DNA without double stranded breaks, and to install any of the 12 possible single-nucleotide conversion events as well as small insertions and/or deletions, or essentially any combination thereof. Over the last few decades, other transformative and Nobel prize-winning technologies that rely on Watson-Crick base-pairing such as PCR, site-directed mutagenesis, RNA interference, and one might say, "classic" CRISPR, were swiftly adopted across labs around the world because of the speed with which mechanistic rules governing their efficiency were determined. Whilst this perspective focuses on the context of gene therapy applications of prime editing, we also further look at the recent studies which have increased our understanding of the mechanism of PEs and simultaneously improved the efficiency and diversity of the PE toolbox.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主要编辑:治疗进展和机制见解。
我们经常会遇到一个简单的问题,“哪种基因编辑技术是最好的?”简单的回答是“没有”。2021年,也就是初始编辑首次取得成功的一年后,我们评估了基因组工程在将治疗方法推向临床方面的潜在变革性进展的前景。我们引用的近20%的论文当时仍处于预印本阶段,这表明当时的知识库处于多么早期的阶段。现在,三年过去了,我们回顾了这一现状,并询问了我们从中学到了什么,以确保这项技术的广泛应用,并强调了一些关键的进步,特别是那些将这项技术推向临床的进展。引体编辑的一大吸引力在于它能够在没有双链断裂的情况下精确编辑DNA,并能够安装12种可能的单核苷酸转换事件中的任何一种,以及小的插入和/或缺失,或者本质上是它们的任何组合。在过去的几十年里,其他依靠沃森-克里克碱基配对的变革性技术和获得诺贝尔奖的技术,如聚合酶链反应(PCR)、定点诱变(site-directed mutagenesis)、RNA干扰(RNA interference),以及人们可能会说的“经典”CRISPR,都被世界各地的实验室迅速采用,因为控制它们效率的机制规则被确定的速度很快。虽然这一观点侧重于引体编辑基因治疗应用的背景,但我们也进一步研究了最近的研究,这些研究增加了我们对PEs机制的理解,同时提高了PE工具箱的效率和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene Therapy
Gene Therapy 医学-生化与分子生物学
CiteScore
9.70
自引率
2.00%
发文量
67
审稿时长
4-8 weeks
期刊介绍: Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.
期刊最新文献
Correction: The disparate burden of infectious diseases. Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer. Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models. Safety, efficacy, and immunogenicity of a novel IgG degrading enzyme (KJ103): results from two randomised, blinded, phase 1 clinical trials. Identifying novel response markers for spinal muscular atrophy revealed by targeted proteomics following gene therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1