A predictive model for Gamma Knife intermediate dose spill: R50%Analytic-GK.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Applied Clinical Medical Physics Pub Date : 2024-11-29 DOI:10.1002/acm2.14579
Ivan L Cordrey, Sare Kucuk, Chester Ramsey, Joseph Bowling, Dharmin D Desai
{"title":"A predictive model for Gamma Knife intermediate dose spill: R50%<sub>Analytic-GK</sub>.","authors":"Ivan L Cordrey, Sare Kucuk, Chester Ramsey, Joseph Bowling, Dharmin D Desai","doi":"10.1002/acm2.14579","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Minimizing intermediate dose spill in stereotactic radiosurgery (SRS) for brain treatment is crucial. Intermediate dose spill correlates with the exposure of normal brain tissue to high doses, which increases the risk of radionecrosis. R50%, defined as the volume of the 50% of prescription isodose cloud/planning target volume, is one metric for intermediate dose spill. A predictive model for R50% in linear accelerator VMAT-delivered SRS has been developed Desai et al. (2020) and is called R50%<sub>Analytic</sub>. This study extends the R50%<sub>Analytic</sub> model to Gamma Knife (GK) delivered SRS, resulting in the R50%<sub>Analytic-GK</sub> model.</p><p><strong>Methods: </strong>Phantom calculations were performed on 11 spherical target volumes ranging from 0.001  to 44 cm<sup>3</sup> to develop the R50%<sub>Analytic-GK</sub> model. R50%<sub>Analytic-GK</sub> was tested against clinical data from 18 brain metastasis cases with one to 11 targets treated on GK Icon and planned in GammaPlan with lightning dose optimizer. Thirty-five targets with volumes between 0.011  and 27.4 cm<sup>3</sup> were analyzed by extracting the R50% achieved clinically (R50%<sub>Clinical</sub>) for comparison to the predicted intermediate dose spill from R50%<sub>Analytic-GK</sub>.</p><p><strong>Results: </strong>The predicted R50%<sub>Analytic-GK</sub> values generally represent a lower bound for the R50%<sub>Clinical</sub> values as the model would predict. The Difference, R50%<sub>Clinical</sub> - R50%<sub>Analytic-GK</sub>, has a median value of 0.92, which quantifies the lower bound nature of R50%<sub>Analytic-GK</sub>. The model reflected the character of intermediate dose spill for the clinical cases. A few outliers were likely due to specific planning complexities.</p><p><strong>Conclusion: </strong>The R50%<sub>Analytic-GK</sub> model for intermediate dose spill successfully extends the theoretical framework of R50%<sub>Analytic</sub> to GK-delivered SRS. It provides a method to predict the intermediate dose spill for GK Icon treatments. This model can aid in assessing SRS treatment plans by providing a benchmark for the intermediate dose spill for comparison.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14579"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Minimizing intermediate dose spill in stereotactic radiosurgery (SRS) for brain treatment is crucial. Intermediate dose spill correlates with the exposure of normal brain tissue to high doses, which increases the risk of radionecrosis. R50%, defined as the volume of the 50% of prescription isodose cloud/planning target volume, is one metric for intermediate dose spill. A predictive model for R50% in linear accelerator VMAT-delivered SRS has been developed Desai et al. (2020) and is called R50%Analytic. This study extends the R50%Analytic model to Gamma Knife (GK) delivered SRS, resulting in the R50%Analytic-GK model.

Methods: Phantom calculations were performed on 11 spherical target volumes ranging from 0.001  to 44 cm3 to develop the R50%Analytic-GK model. R50%Analytic-GK was tested against clinical data from 18 brain metastasis cases with one to 11 targets treated on GK Icon and planned in GammaPlan with lightning dose optimizer. Thirty-five targets with volumes between 0.011  and 27.4 cm3 were analyzed by extracting the R50% achieved clinically (R50%Clinical) for comparison to the predicted intermediate dose spill from R50%Analytic-GK.

Results: The predicted R50%Analytic-GK values generally represent a lower bound for the R50%Clinical values as the model would predict. The Difference, R50%Clinical - R50%Analytic-GK, has a median value of 0.92, which quantifies the lower bound nature of R50%Analytic-GK. The model reflected the character of intermediate dose spill for the clinical cases. A few outliers were likely due to specific planning complexities.

Conclusion: The R50%Analytic-GK model for intermediate dose spill successfully extends the theoretical framework of R50%Analytic to GK-delivered SRS. It provides a method to predict the intermediate dose spill for GK Icon treatments. This model can aid in assessing SRS treatment plans by providing a benchmark for the intermediate dose spill for comparison.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伽玛刀中间剂量溢出的预测模型:R50%Analytic-GK.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
期刊最新文献
Development of an automated CBCT-based simulation-free platform for expedited palliative radiotherapy on a conventional linear accelerator. Patient-specific adaptive planning margin for whole bladder radiation therapy. Performance of recurrent neural networks with Monte Carlo dropout for predicting pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance imaging data. Calibration and volunteer testing of a prototype contactless respiratory motion detection system based on laser tracking. Development and application of a novel scintillation gel-based 3D dosimetry system for radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1