Binding of Infectious Hypodermal and Haematopoietic Necrosis Virus-Like Particles to Mannose Receptor Stimulates Antimicrobial Responses in Immune-Related Tissues of Peneaus vannamei.

IF 2.2 3区 农林科学 Q2 FISHERIES Journal of fish diseases Pub Date : 2024-11-28 DOI:10.1111/jfd.14051
Wattana Weerachatyanukul, Chettupon Pooljun, Charoonroj Chotwiwatthanakun, Pitchanee Jariyapong
{"title":"Binding of Infectious Hypodermal and Haematopoietic Necrosis Virus-Like Particles to Mannose Receptor Stimulates Antimicrobial Responses in Immune-Related Tissues of Peneaus vannamei.","authors":"Wattana Weerachatyanukul, Chettupon Pooljun, Charoonroj Chotwiwatthanakun, Pitchanee Jariyapong","doi":"10.1111/jfd.14051","DOIUrl":null,"url":null,"abstract":"<p><p>Mannose receptor (MR) is a transmembrane protein and a type of pattern-recognition receptor (PRR) that plays a critical role in the immunity of mammals and fish. In this study, we examined the role of MR in binding with infectious hypodermal and haematopoietic necrosis virus-like particle (IHHN-VLP) and the downstream immune pathway that it triggers in the shrimp Peneaus vannamei. Upon IHHN-VLP challenge, transcripts of MR in P. vannamei (PvMR) increased significantly in all examined tissues, particularly those related to shrimp immunity, including hemocyte, hepatopancreas and gill tissues. Specifically, IHHN-VLP bound to the 34-kDa PvMR protein in shrimp-tissue extracts. Immunohistochemistry results of hemocytes showed that PvMR was initially localised on the plasma membrane but later internalised and dispersed throughout the cytoplasm after IHHN-VLP administration. Binding between IHHN-VLP and PvMR also induced significant upregulation of genes for the antimicrobial peptides (AMPs) penaeidin 3 and crustin, presumably to protect the shrimp against the viral infection. However, knocking down PvMR resulted in down-regulation of all immune-related genes examined. Overall, as an immune-related PRR, PvMR serves as a receptor for invading viruses, which then trigger the expression of AMPs. Strategic designs using PvMR could be developed to either block the interaction of native virus with the host cells or provoke its up-regulation to enhance shrimp immunity, which could open up opportunities to fight against IHHNV infection in shrimp.</p>","PeriodicalId":15849,"journal":{"name":"Journal of fish diseases","volume":" ","pages":"e14051"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish diseases","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfd.14051","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Mannose receptor (MR) is a transmembrane protein and a type of pattern-recognition receptor (PRR) that plays a critical role in the immunity of mammals and fish. In this study, we examined the role of MR in binding with infectious hypodermal and haematopoietic necrosis virus-like particle (IHHN-VLP) and the downstream immune pathway that it triggers in the shrimp Peneaus vannamei. Upon IHHN-VLP challenge, transcripts of MR in P. vannamei (PvMR) increased significantly in all examined tissues, particularly those related to shrimp immunity, including hemocyte, hepatopancreas and gill tissues. Specifically, IHHN-VLP bound to the 34-kDa PvMR protein in shrimp-tissue extracts. Immunohistochemistry results of hemocytes showed that PvMR was initially localised on the plasma membrane but later internalised and dispersed throughout the cytoplasm after IHHN-VLP administration. Binding between IHHN-VLP and PvMR also induced significant upregulation of genes for the antimicrobial peptides (AMPs) penaeidin 3 and crustin, presumably to protect the shrimp against the viral infection. However, knocking down PvMR resulted in down-regulation of all immune-related genes examined. Overall, as an immune-related PRR, PvMR serves as a receptor for invading viruses, which then trigger the expression of AMPs. Strategic designs using PvMR could be developed to either block the interaction of native virus with the host cells or provoke its up-regulation to enhance shrimp immunity, which could open up opportunities to fight against IHHNV infection in shrimp.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of fish diseases
Journal of fish diseases 农林科学-海洋与淡水生物学
CiteScore
4.60
自引率
12.00%
发文量
170
审稿时长
6 months
期刊介绍: Journal of Fish Diseases enjoys an international reputation as the medium for the exchange of information on original research into all aspects of disease in both wild and cultured fish and shellfish. Areas of interest regularly covered by the journal include: -host-pathogen relationships- studies of fish pathogens- pathophysiology- diagnostic methods- therapy- epidemiology- descriptions of new diseases
期刊最新文献
Antimicrobial Susceptibility and Local Epidemiological Cut-Off Values of Vibrio anguillarum Isolated From Fish Farms in Turkey. Binding of Infectious Hypodermal and Haematopoietic Necrosis Virus-Like Particles to Mannose Receptor Stimulates Antimicrobial Responses in Immune-Related Tissues of Peneaus vannamei. Epidemiological Study of Parasites of the Edible Scallop Aequipecten tehuelchus in Patagonia, Southwest Atlantic Ocean. Professor Ronald John Roberts, CCT, FRCVS, FRCPath, FRSE, (b) 1941, (q) Glasgow 1964, Died 3rd August 2024. Follicular Cell Hyperplasia (Goitre), Adenoma and Adenocarcinoma of the Thyroid Gland in Fourlined Terapon (Pelates quadrilineatus): Clinical and Histopathological Study: 2022-2023.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1