Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis.
Jin-Ho Park, Han-Sol Bae, Ingeun Kim, Jiwoon Jung, Yoonho Roh, Dongbin Lee, Tae Sung Hwang, Hee-Chun Lee, June-Ho Byun
{"title":"Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis.","authors":"Jin-Ho Park, Han-Sol Bae, Ingeun Kim, Jiwoon Jung, Yoonho Roh, Dongbin Lee, Tae Sung Hwang, Hee-Chun Lee, June-Ho Byun","doi":"10.1007/s13770-024-00683-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.</p><p><strong>Methods: </strong>This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DW-MSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.</p><p><strong>Results: </strong>Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.</p><p><strong>Conclusion: </strong>Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"145-157"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00683-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
Methods: This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DW-MSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
Results: Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
Conclusion: Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.