Phytomediated synthesis of WO3 nanoparticles using Solanum lycopersicum fruit extract for enhanced photocatalytic activity of 2,4-dichlorophenol.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-11-01 Epub Date: 2024-11-06 DOI:10.2166/wst.2024.365
S Natchathra, G Indramahalakshmi, Balasubramani Kavitha
{"title":"Phytomediated synthesis of WO<sub>3</sub> nanoparticles using <i>Solanum lycopersicum</i> fruit extract for enhanced photocatalytic activity of 2,4-dichlorophenol.","authors":"S Natchathra, G Indramahalakshmi, Balasubramani Kavitha","doi":"10.2166/wst.2024.365","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, bio-citric acid/tungsten oxide (WO<sub>3</sub>) (BCAWO) nanoparticles (NPs) were prepared by using <i>Solanum lycopersicum</i> fruit extract as a reducing as well as a capping agent. The photocatalysts were characterized by UV-vis diffuse reflectance spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy, and photoluminescence spectroscopy techniques. Diffraction peaks in the XRD spectrum were identified as the crystal planes of crystalline tungsten oxide. The BCAWO had an average size of 23.14 nm. For W-O bonds, the Fourier transform infrared spectrum displays the vibrational peak at 671.23 cm<sup>-1</sup>. A prominent absorption band was observed at 268 nm, indicating the 1.2 eV bandgap. Under xenon (Xe) lamp irradiation, the synthesized BCAWO nanoparticles showed notable photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP), with a degradation rate of 96%. With BCAWO concentrations of 2.5 g/L, pH of 4, reaction period of 180 min, and 2,4 DCP concentration of 10 mg/L, the degradation of 2,4-DCP had the highest efficacy, 96%. The degradation of phenols in wastewater may be facilitated by using the green WO<sub>3</sub> nanoparticles as a photocatalyst, according to the results.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2918-2933"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.365","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, bio-citric acid/tungsten oxide (WO3) (BCAWO) nanoparticles (NPs) were prepared by using Solanum lycopersicum fruit extract as a reducing as well as a capping agent. The photocatalysts were characterized by UV-vis diffuse reflectance spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy, and photoluminescence spectroscopy techniques. Diffraction peaks in the XRD spectrum were identified as the crystal planes of crystalline tungsten oxide. The BCAWO had an average size of 23.14 nm. For W-O bonds, the Fourier transform infrared spectrum displays the vibrational peak at 671.23 cm-1. A prominent absorption band was observed at 268 nm, indicating the 1.2 eV bandgap. Under xenon (Xe) lamp irradiation, the synthesized BCAWO nanoparticles showed notable photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP), with a degradation rate of 96%. With BCAWO concentrations of 2.5 g/L, pH of 4, reaction period of 180 min, and 2,4 DCP concentration of 10 mg/L, the degradation of 2,4-DCP had the highest efficacy, 96%. The degradation of phenols in wastewater may be facilitated by using the green WO3 nanoparticles as a photocatalyst, according to the results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用番茄茄果实提取物植物介导合成WO3纳米颗粒增强2,4-二氯酚的光催化活性。
本研究以番茄茄果实提取物为还原剂和封盖剂,制备了生物柠檬酸/氧化钨纳米颗粒(BCAWO)。采用紫外-可见漫反射光谱、粉末x射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散x射线光谱(EDS)、高分辨率透射电子显微镜和光致发光光谱技术对光催化剂进行了表征。XRD谱图中的衍射峰为结晶氧化钨的晶面。BCAWO的平均尺寸为23.14 nm。对于W-O键,傅里叶变换红外光谱在671.23 cm-1处显示出振动峰。在268 nm处观察到明显的吸收带,表明带隙为1.2 eV。在氙灯照射下,合成的BCAWO纳米颗粒对2,4-二氯苯酚(2,4- dcp)具有明显的光催化降解效果,降解率为96%。在BCAWO浓度为2.5 g/L、pH为4、反应时间为180 min、2,4 DCP浓度为10 mg/L的条件下,对2,4-DCP的降解效果最高,达96%。结果表明,绿色WO3纳米颗粒作为光催化剂可促进废水中酚类物质的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Calibrating the Priestley-Taylor model for evapotranspiration across different substrate depths in green roofs. Corrigendum: Water Science and Technology: Uncertainty in Evapotranspiration Inputs Impacts Hydrological Modeling, Mehnaza Akhter, et al. Development of a process model and life cycle assessment for a large water resource recovery facility and comparison of biosolids process upgrade options. Evaluation of hydraulic retention time on hydrogen production from corn industry wastewater by dark fermentation. Seawater intrusion and infiltration modelling coupled to digital tools to avoid high saline concentrations in reclaimed water: application in coastal central Italy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1