Aberrant encoding of event saliency in the orbitofrontal cortex following loss of the psychiatric-associated circular RNA, circHomer1.

IF 5.8 1区 医学 Q1 PSYCHIATRY Translational Psychiatry Pub Date : 2024-11-28 DOI:10.1038/s41398-024-03188-0
Amber J Zimmerman, Jason P Weick, Grigorios Papageorgiou, Nikolaos Mellios, Jonathan L Brigman
{"title":"Aberrant encoding of event saliency in the orbitofrontal cortex following loss of the psychiatric-associated circular RNA, circHomer1.","authors":"Amber J Zimmerman, Jason P Weick, Grigorios Papageorgiou, Nikolaos Mellios, Jonathan L Brigman","doi":"10.1038/s41398-024-03188-0","DOIUrl":null,"url":null,"abstract":"<p><p>CircHomer1 is an activity-dependent circular RNA (circRNA) isoform produced from back-splicing of the Homer1 transcript. Homer1 isoforms are well-known regulators of homeostatic synaptic plasticity through post-synaptic density scaffold regulation. Homer1 polymorphisms have been associated with psychiatric diseases including schizophrenia (SCZ) and bipolar disorder (BD). Postmortem tissue from patients with SCZ and BD displayed reduced circHomer1 levels within the orbitofrontal cortex (OFC), a region that tracks event saliency important for modulating behavioral flexibility. While dysregulation of circHomer1 expression has recently been identified across multiple psychiatric and neurodegenerative disorders and is associated with impaired behavioral flexibility in mice, it is unknown whether circHomer1 can induce electrophysiological signatures relevant to cognitive dysfunction in these disorders. To examine the role of circHomer1 in neuronal signaling, we bilaterally knocked down circHomer1 in the OFC of C57BL/6 J male mice and recorded neural activity from the OFC during a touchscreen reversal learning task then measured molecular changes of synaptic regulators following knockdown. Knockdown of circHomer1 within the OFC induced choice-dependent changes in multiunit firing rate and local field potential coordination and power to salient stimuli during reversal learning. Further, these electrophysiological changes were associated with transcriptional downregulation of glutamatergic signaling effectors and behavioral alterations leading to impaired cognitive flexibility. CircHomer1 is a stable biomolecule, whose knockdown in rodent OFC produces lasting electrophysiological and transcriptional changes important for efficient reversal learning. This is, to our knowledge, the first demonstration of a psychiatric-associated circRNA contributing to electrophysiological, transcriptional, and behavioral alterations relevant to psychiatric phenotypes.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"480"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03188-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

CircHomer1 is an activity-dependent circular RNA (circRNA) isoform produced from back-splicing of the Homer1 transcript. Homer1 isoforms are well-known regulators of homeostatic synaptic plasticity through post-synaptic density scaffold regulation. Homer1 polymorphisms have been associated with psychiatric diseases including schizophrenia (SCZ) and bipolar disorder (BD). Postmortem tissue from patients with SCZ and BD displayed reduced circHomer1 levels within the orbitofrontal cortex (OFC), a region that tracks event saliency important for modulating behavioral flexibility. While dysregulation of circHomer1 expression has recently been identified across multiple psychiatric and neurodegenerative disorders and is associated with impaired behavioral flexibility in mice, it is unknown whether circHomer1 can induce electrophysiological signatures relevant to cognitive dysfunction in these disorders. To examine the role of circHomer1 in neuronal signaling, we bilaterally knocked down circHomer1 in the OFC of C57BL/6 J male mice and recorded neural activity from the OFC during a touchscreen reversal learning task then measured molecular changes of synaptic regulators following knockdown. Knockdown of circHomer1 within the OFC induced choice-dependent changes in multiunit firing rate and local field potential coordination and power to salient stimuli during reversal learning. Further, these electrophysiological changes were associated with transcriptional downregulation of glutamatergic signaling effectors and behavioral alterations leading to impaired cognitive flexibility. CircHomer1 is a stable biomolecule, whose knockdown in rodent OFC produces lasting electrophysiological and transcriptional changes important for efficient reversal learning. This is, to our knowledge, the first demonstration of a psychiatric-associated circRNA contributing to electrophysiological, transcriptional, and behavioral alterations relevant to psychiatric phenotypes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
期刊最新文献
Personalized use of ketamine and esketamine for treatment-resistant depression. Aberrant encoding of event saliency in the orbitofrontal cortex following loss of the psychiatric-associated circular RNA, circHomer1. Reverse phase protein array-based investigation of mitochondrial genes reveals alteration of glutaminolysis in the parahippocampal cortex of people who died by suicide. Decreased prefrontal glutamatergic function is associated with a reduced astrocyte-related gene expression in treatment-resistant depression. Naltrexone blocks alcohol-induced effects on kappa-opioid receptors in the plasma membrane.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1