Biosynthesis of sakuranetin regulated by OsMPK6-OsWRKY67-OsNOMT cascade enhances resistance to false smut disease.

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences New Phytologist Pub Date : 2025-02-01 Epub Date: 2024-11-29 DOI:10.1111/nph.20308
Jinbiao Ma, Lirong Wei, Keyi Huang, Dacheng Wang, Jiameng Gao, Xi Chen, Huimin Guo, Shangyu Gao, Min Zhang, Shujing Li, Chenjie Yu, Jing Zhao, Jingni Wu, Qin Gu, Sun Tae Kim, Ravi Gupta, Guosheng Xiong, Clive Lo, Yongfeng Liu, Yiming Wang
{"title":"Biosynthesis of sakuranetin regulated by OsMPK6-OsWRKY67-OsNOMT cascade enhances resistance to false smut disease.","authors":"Jinbiao Ma, Lirong Wei, Keyi Huang, Dacheng Wang, Jiameng Gao, Xi Chen, Huimin Guo, Shangyu Gao, Min Zhang, Shujing Li, Chenjie Yu, Jing Zhao, Jingni Wu, Qin Gu, Sun Tae Kim, Ravi Gupta, Guosheng Xiong, Clive Lo, Yongfeng Liu, Yiming Wang","doi":"10.1111/nph.20308","DOIUrl":null,"url":null,"abstract":"<p><p>Rice false smut disease, caused by the fungal pathogen Ustilaginoidea virens, significantly restricts both the production and quality of rice grains. However, the molecular mechanism underlying rice resistance against U. virens remain largely elusive. Transcriptome analysis of rice panicles infected with U. virens revealing the crucial role of genes involved in sakuranetin biosynthesis in conferring resistance to the pathogen. In vitro assays demonstrated that sakuranetin was most effective at inhibiting mycelial growth, spore germination, and host infection by U. virens. The expression of OsNOMT, the key enzyme in sakuranetin biosynthesis, is directly regulated by the transcription factor OsWRKY67. Furthermore, OsMPK6, a mitogen-activated protein kinase, interacts with and phosphorylates OsWRKY67, thereby modulating sakuranetin biosynthesis and resistance to U. virens. Moreover, the exogenous application of synthetic sakuranetin significantly reduces U. virens infection. Our findings reveal that the OsMPK6-OsWRKY67-OsNOMT signaling cascade plays a pivotal role in rice resistance to U. virens by regulating sakuranetin biosynthesis.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"1216-1231"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20308","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Rice false smut disease, caused by the fungal pathogen Ustilaginoidea virens, significantly restricts both the production and quality of rice grains. However, the molecular mechanism underlying rice resistance against U. virens remain largely elusive. Transcriptome analysis of rice panicles infected with U. virens revealing the crucial role of genes involved in sakuranetin biosynthesis in conferring resistance to the pathogen. In vitro assays demonstrated that sakuranetin was most effective at inhibiting mycelial growth, spore germination, and host infection by U. virens. The expression of OsNOMT, the key enzyme in sakuranetin biosynthesis, is directly regulated by the transcription factor OsWRKY67. Furthermore, OsMPK6, a mitogen-activated protein kinase, interacts with and phosphorylates OsWRKY67, thereby modulating sakuranetin biosynthesis and resistance to U. virens. Moreover, the exogenous application of synthetic sakuranetin significantly reduces U. virens infection. Our findings reveal that the OsMPK6-OsWRKY67-OsNOMT signaling cascade plays a pivotal role in rice resistance to U. virens by regulating sakuranetin biosynthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OsMPK6-OsWRKY67-OsNOMT级联调控樱花素的生物合成增强对假黑穗病的抗性。
水稻假黑穗病是由真菌病原菌Ustilaginoidea virens引起的水稻假黑穗病,严重制约着稻米的生产和品质。然而,水稻抗性的分子机制在很大程度上仍然难以捉摸。对感染了樱草杆菌的水稻穗的转录组分析揭示了樱花素生物合成相关基因在抵抗病原菌中的关键作用。体外实验表明,樱花素对抑制葡萄球菌菌丝生长、孢子萌发和宿主感染最有效。OsNOMT是樱花素生物合成的关键酶,其表达受转录因子OsWRKY67的直接调控。此外,OsMPK6(一种丝裂原激活的蛋白激酶)与OsWRKY67相互作用并使其磷酸化,从而调节樱花素的生物合成和对葡萄球菌的抗性。此外,外源应用合成樱素可显著降低乌氏菌的感染。我们的研究结果表明,OsMPK6-OsWRKY67-OsNOMT信号级联通过调节樱花素的生物合成,在水稻抗性中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
期刊最新文献
Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. GSK3s promote the phyB-ELF3-HMR complex formation to regulate plant thermomorphogenesis. How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model. New insights into the mechanisms of plant isotope fractionation from combined analysis of intramolecular 13C and deuterium abundances in Pinus nigra tree-ring glucose. New mechanism of strigolactone-regulated cold tolerance in tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1