LsKN1 and LsOFP6 synergistically regulate the bolting time by modulating the gibberellin pathway in lettuce.

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences New Phytologist Pub Date : 2024-11-29 DOI:10.1111/nph.20307
Yetong Qi, Wei Shao, Haoyu Chen, Temoor Ahmed, Xinhui Zhao, Yong Wang, Lei Zhu, Shouru Sun, Hanhui Kuang, Guanghui An
{"title":"LsKN1 and LsOFP6 synergistically regulate the bolting time by modulating the gibberellin pathway in lettuce.","authors":"Yetong Qi, Wei Shao, Haoyu Chen, Temoor Ahmed, Xinhui Zhao, Yong Wang, Lei Zhu, Shouru Sun, Hanhui Kuang, Guanghui An","doi":"10.1111/nph.20307","DOIUrl":null,"url":null,"abstract":"<p><p>Bolting time is an important agronomic trait in lettuce (Lactuca sativa) production. Premature bolting significantly reduces crop quality and marketability. Here, we report map-based cloning and characterization of a LsKN1 gene that controls bolting in lettuce. A segregating population was developed by crossing a crisphead-type cultivar with a stem-type cultivar to genetically map and clone the LsKN1 gene. In the late-bolting parent (crisphead), the LsKN1 was activated by a CACTA-like transposon which was inserted into the first exon of LsKN1. Complementation test, overexpression, and CRISPR/cas9 knockout showed that the activated LsKN1 allele (LsKN1<sup>TP</sup>) delays bolting in lettuce. ChIP-seq and phytohormone analysis demonstrated that LsKN1 regulates gibberellin (GA) biosynthesis and response. LsKN1<sup>TP</sup> binds to the promoter of the LsGA20ox1 and LsRGA1, and down- and upregulates their expression, respectively. Furthermore, LsRGA1 interacts with LsKN1<sup>TP</sup> to enhance the repression of GA biosynthesis. LsOFP6 acts as a safeguard, interacting with LsKN1<sup>TP</sup> to prevent excessive inhibition of GA biosynthesis and response during the vegetative-to-reproductive phase transition. The LsKN1-LsOFP6 module orchestrates the GA pathway to regulate bolting time in lettuce, which provides insight into the bolting development in lettuce and offers valuable genetic resources for breeding lettuce varieties resistant to premature bolting.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20307","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Bolting time is an important agronomic trait in lettuce (Lactuca sativa) production. Premature bolting significantly reduces crop quality and marketability. Here, we report map-based cloning and characterization of a LsKN1 gene that controls bolting in lettuce. A segregating population was developed by crossing a crisphead-type cultivar with a stem-type cultivar to genetically map and clone the LsKN1 gene. In the late-bolting parent (crisphead), the LsKN1 was activated by a CACTA-like transposon which was inserted into the first exon of LsKN1. Complementation test, overexpression, and CRISPR/cas9 knockout showed that the activated LsKN1 allele (LsKN1TP) delays bolting in lettuce. ChIP-seq and phytohormone analysis demonstrated that LsKN1 regulates gibberellin (GA) biosynthesis and response. LsKN1TP binds to the promoter of the LsGA20ox1 and LsRGA1, and down- and upregulates their expression, respectively. Furthermore, LsRGA1 interacts with LsKN1TP to enhance the repression of GA biosynthesis. LsOFP6 acts as a safeguard, interacting with LsKN1TP to prevent excessive inhibition of GA biosynthesis and response during the vegetative-to-reproductive phase transition. The LsKN1-LsOFP6 module orchestrates the GA pathway to regulate bolting time in lettuce, which provides insight into the bolting development in lettuce and offers valuable genetic resources for breeding lettuce varieties resistant to premature bolting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
期刊最新文献
Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model. New insights into the mechanisms of plant isotope fractionation from combined analysis of intramolecular 13C and deuterium abundances in Pinus nigra tree-ring glucose. New mechanism of strigolactone-regulated cold tolerance in tomato. Vanessa E. Rubio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1