Chongge Pan, Yali Hou, Yanting Hou, Ruizhen Wang, Meiyu Qian, Xue Bai, Maodi Liang, Jingzhou Wang, Jie Liu, Qianqian Wei, Ziyan Pan, Ting Wang, Chenyu Hu, Kun Xiang, Chun Yang, Cuizhe Wang, Hua Chen, Jun Zhang
{"title":"Integrated analysis reveals that miR-548ab promotes the development of obesity and T2DM.","authors":"Chongge Pan, Yali Hou, Yanting Hou, Ruizhen Wang, Meiyu Qian, Xue Bai, Maodi Liang, Jingzhou Wang, Jie Liu, Qianqian Wei, Ziyan Pan, Ting Wang, Chenyu Hu, Kun Xiang, Chun Yang, Cuizhe Wang, Hua Chen, Jun Zhang","doi":"10.1016/j.jgg.2024.11.011","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of microRNA (miRNA) expression following the development of obesity is closely linked to the onset of type 2 diabetes mellitus (T2DM). Identifying differentially expressed miRNAs and their roles in regulating glucose metabolism will provide a theoretical foundation for the molecular mechanisms underlying obesity-induced T2DM. Here, we perform a genome-wide association study involving 5 glycolipid metabolism traits in 1783 Kazakh and 1198 Uyghur individuals to identify miRNAs associated with fasting plasma glucose (FPG) levels. A miR-548ab mimic and inhibitor are administered to hepatocytes and adipocytes, as well as obese and diabetic mice, to determine miR-548ab-related downstream signalling pathways. The effects of miR-548ab on glucose metabolism are validated using the glucose tolerance test and insulin tolerance test. Collectively, these results indicate that miR-548ab is significantly associated with FPG levels and obesity-related T2DM in both Kazakh and Uyghur populations. The miR-548ab-GULP1/SLC25A21-GLUT4 network exerts regulatory effects on glucose metabolism, obesity, and T2DM, positioning it as a candidate risk factor, potential diagnostic marker, and therapeutic target for obesity-induced T2DM. Additionally, through evolutionary analysis, the authentic variants or haplotypes of GULP1 and SLC25A21 are categorized according to their genetic susceptibility to T2DM. The miR-548ab inhibitor shows beneficial effects in obese and diabetic mice.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"231-244"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.11.011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulation of microRNA (miRNA) expression following the development of obesity is closely linked to the onset of type 2 diabetes mellitus (T2DM). Identifying differentially expressed miRNAs and their roles in regulating glucose metabolism will provide a theoretical foundation for the molecular mechanisms underlying obesity-induced T2DM. Here, we perform a genome-wide association study involving 5 glycolipid metabolism traits in 1783 Kazakh and 1198 Uyghur individuals to identify miRNAs associated with fasting plasma glucose (FPG) levels. A miR-548ab mimic and inhibitor are administered to hepatocytes and adipocytes, as well as obese and diabetic mice, to determine miR-548ab-related downstream signalling pathways. The effects of miR-548ab on glucose metabolism are validated using the glucose tolerance test and insulin tolerance test. Collectively, these results indicate that miR-548ab is significantly associated with FPG levels and obesity-related T2DM in both Kazakh and Uyghur populations. The miR-548ab-GULP1/SLC25A21-GLUT4 network exerts regulatory effects on glucose metabolism, obesity, and T2DM, positioning it as a candidate risk factor, potential diagnostic marker, and therapeutic target for obesity-induced T2DM. Additionally, through evolutionary analysis, the authentic variants or haplotypes of GULP1 and SLC25A21 are categorized according to their genetic susceptibility to T2DM. The miR-548ab inhibitor shows beneficial effects in obese and diabetic mice.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.