Abrupt demographic change affects projected population size: Implications for an endangered species in a protected area.

Ecology Pub Date : 2024-11-28 DOI:10.1002/ecy.4487
Karen B Strier, Anthony R Ives
{"title":"Abrupt demographic change affects projected population size: Implications for an endangered species in a protected area.","authors":"Karen B Strier, Anthony R Ives","doi":"10.1002/ecy.4487","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how demographic parameters change with density is essential for predicting the resilience of small populations. We use long-term, individual-based life history data from an isolated population of the Critically Endangered Northern Muriqui (Brachyteles hypoxanthus) inhabiting a 1000-ha protected forest to evaluate density-dependent demographic rates before and after an abrupt population decline. We found no effect of density on fertility or birth sex ratio, but mortality rates increased linearly with log density over the 33 years of population growth (1983-2015) and the subsequent 7 years of population decline (2016-2022). We used an age- and sex-structured logistic growth model to project population sizes to 2060. Under the 1983-2015 demographic profile, the projected size was 500 individuals, but this dropped to 200 when including the abrupt change. Although the abrupt decline coincided with the end of a 2-year drought and a yellow fever outbreak, we found no statistical effects of climate or disease on the continued population decline after 2016. However, the lower projected carrying capacity for muriquis is consistent with reduced forest productivity and increased predator pressures. These findings demonstrate the value of long-term monitoring for identifying demographic changes that affect the sustainability of wildlife populations in small protected areas.</p>","PeriodicalId":93986,"journal":{"name":"Ecology","volume":" ","pages":"e4487"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ecy.4487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how demographic parameters change with density is essential for predicting the resilience of small populations. We use long-term, individual-based life history data from an isolated population of the Critically Endangered Northern Muriqui (Brachyteles hypoxanthus) inhabiting a 1000-ha protected forest to evaluate density-dependent demographic rates before and after an abrupt population decline. We found no effect of density on fertility or birth sex ratio, but mortality rates increased linearly with log density over the 33 years of population growth (1983-2015) and the subsequent 7 years of population decline (2016-2022). We used an age- and sex-structured logistic growth model to project population sizes to 2060. Under the 1983-2015 demographic profile, the projected size was 500 individuals, but this dropped to 200 when including the abrupt change. Although the abrupt decline coincided with the end of a 2-year drought and a yellow fever outbreak, we found no statistical effects of climate or disease on the continued population decline after 2016. However, the lower projected carrying capacity for muriquis is consistent with reduced forest productivity and increased predator pressures. These findings demonstrate the value of long-term monitoring for identifying demographic changes that affect the sustainability of wildlife populations in small protected areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abrupt demographic change affects projected population size: Implications for an endangered species in a protected area. An insect pheromone primes tolerance of herbivory in goldenrod plants. Cannibalism in northern giant petrels (Macronectes halli) at Possession Island, Southern Indian Ocean. Dominant species stabilize pollination services through response diversity, but not cross-scale redundancy. Time since fire interacts with herbivore intake rates to control herbivore habitat occupancy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1