Fast-charging all-solid-state battery cathodes with long cycle life

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-11-30 DOI:10.1016/j.nanoen.2024.110531
Christopher Doerrer, Xiangwen Gao, Junfu Bu, Samuel Wheeler, Mauro Pasta, Peter G. Bruce, Patrick S. Grant
{"title":"Fast-charging all-solid-state battery cathodes with long cycle life","authors":"Christopher Doerrer, Xiangwen Gao, Junfu Bu, Samuel Wheeler, Mauro Pasta, Peter G. Bruce, Patrick S. Grant","doi":"10.1016/j.nanoen.2024.110531","DOIUrl":null,"url":null,"abstract":"Many battery applications target fast charging to achieve an 80% rise in state of charge (SOC) in <em>&lt;</em>15<!-- --> <!-- -->min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80% SOC while retaining a high specific energy of 400<!-- --> <!-- -->W<!-- --> <!-- -->h <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;k&lt;/mi&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;cell&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -945.9 2151.5 1345.3\" width=\"4.997ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6B\"></use></g><g is=\"true\" transform=\"translate(528,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use></g></g><g is=\"true\" transform=\"translate(500,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(500,-328)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-63\"></use><use transform=\"scale(0.707)\" x=\"444\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1167\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></script></span>. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li- Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup><em>−</em>2</sup>, a specific capacity of 150<!-- --> <!-- -->mA<!-- --> <!-- -->h g<sup><em>−</em>1</sup> was achieved in <em>∼</em>8<!-- --> <!-- -->min, with 81% capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210<!-- --> <!-- -->µm thick cathode was able to be charged at an extraordinary current density of 50<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup><em>−</em>2</sup> to reach an areal capacity of 8<!-- --> <!-- -->mA<!-- --> <!-- -->h cm<sup><em>−</em>2</sup> in only 10<!-- --> <!-- -->min, suggesting practical cathodes for SSBs with 400<!-- --> <!-- -->W<!-- --> <!-- -->h <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;k&lt;/mi&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;cell&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -945.9 2151.5 1345.3\" width=\"4.997ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6B\"></use></g><g is=\"true\" transform=\"translate(528,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use></g></g><g is=\"true\" transform=\"translate(500,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(500,-328)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-63\"></use><use transform=\"scale(0.707)\" x=\"444\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1167\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></script></span> may be within reach.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"46 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many battery applications target fast charging to achieve an 80% rise in state of charge (SOC) in <15 min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80% SOC while retaining a high specific energy of 400 W h kgcell1. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li- Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15 mA cm2, a specific capacity of 150 mA h g1 was achieved in 8 min, with 81% capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210 µm thick cathode was able to be charged at an extraordinary current density of 50 mA cm2 to reach an areal capacity of 8 mA h cm2 in only 10 min, suggesting practical cathodes for SSBs with 400 W h kgcell1 may be within reach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Fast-charging all-solid-state battery cathodes with long cycle life High-entropy optimizing d-orbital electronic configuration of metal organic framework for high-current-density anion exchange membrane water electrolysis High-Entropy Heterostructures Modulated by Oxyphilic Transition Metals for Efficient Oxygen Evolution Reaction Triboelectric nanogenerator based on well-dispersed and oxide-free liquid metal-doped conductive hydrogel as self-powered wearable sensor for respiratory and thyroid cartilage signal monitoring Contact-electro-chemistry Induced by Flow Electrification in Dielectric Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1