Yujing Yang, Wanfa Wang, Shengde Yu, Yuanbi Yi, Sen Xu, Yuanzhi Yao, Jun Zhong, Wenhong Shi, Sainan Chen, Qixin Wu, Zuhong Ou, Hu Ding, Si-Liang Li
{"title":"Seasonal variations and hydrological management regulate nutrient transport in cascade damming: Insights from carbon and nitrogen isotopes","authors":"Yujing Yang, Wanfa Wang, Shengde Yu, Yuanbi Yi, Sen Xu, Yuanzhi Yao, Jun Zhong, Wenhong Shi, Sainan Chen, Qixin Wu, Zuhong Ou, Hu Ding, Si-Liang Li","doi":"10.1016/j.watres.2024.122894","DOIUrl":null,"url":null,"abstract":"Reservoirs around the world have significantly altered the natural transport of nutrients in rivers. However, the specific effects of the cascade damming on the migration, transformation, and environmental consequences of these nutrients remain unclear. To address this knowledge gap, we analyzed spatiotemporal variations in water chemistry, nutrient concentrations, stable isotope of dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>) and nitrate isotope (δ<sup>15</sup>N-NO<sub>3</sub><sup>-</sup>) in seven cascade reservoirs along the Wujiang River, each characterized by different regulatory regimes. Our findings reveal that the average absolute changes in concentrations of total nitrogen (TN), total phosphorus (TP), and silicon dioxide (SiO<sub>2</sub>) during the wet season (WS, spring and summer) were 2.4, 1.4, and 1.1 times higher than those observed in the dry season (DS, autumn and winter). During the WS, the average apparent retention efficiency (*RET<sub>f</sub>) values in the Hongjiadu reservoir were 97% for TN, 98% for TP, and 95% for SiO<sub>2</sub>, indicating substantial nutrient consumption in the cascading reservoirs. Conversely, during the DS, the *RET<sub>f</sub> values for TN, TP, and SiO<sub>2</sub> were negative, suggesting notable nutrient accumulation within the reservoirs. The nutrient fluxes released downstream from the cascade reservoirs in the Wujiang River were significantly greater than the upstream inflow fluxes. These findings help demonstrate how downstream discharge across cascade reservoirs amplifies nutrient flux disparities due to dam construction. Our study enhances the understanding of how cascade dam construction impacts nutrient dynamics, supporting the optimization of reservoir operation models and advancing scientific water resource management and conservation efforts.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"200 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122894","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoirs around the world have significantly altered the natural transport of nutrients in rivers. However, the specific effects of the cascade damming on the migration, transformation, and environmental consequences of these nutrients remain unclear. To address this knowledge gap, we analyzed spatiotemporal variations in water chemistry, nutrient concentrations, stable isotope of dissolved inorganic carbon (δ13CDIC) and nitrate isotope (δ15N-NO3-) in seven cascade reservoirs along the Wujiang River, each characterized by different regulatory regimes. Our findings reveal that the average absolute changes in concentrations of total nitrogen (TN), total phosphorus (TP), and silicon dioxide (SiO2) during the wet season (WS, spring and summer) were 2.4, 1.4, and 1.1 times higher than those observed in the dry season (DS, autumn and winter). During the WS, the average apparent retention efficiency (*RETf) values in the Hongjiadu reservoir were 97% for TN, 98% for TP, and 95% for SiO2, indicating substantial nutrient consumption in the cascading reservoirs. Conversely, during the DS, the *RETf values for TN, TP, and SiO2 were negative, suggesting notable nutrient accumulation within the reservoirs. The nutrient fluxes released downstream from the cascade reservoirs in the Wujiang River were significantly greater than the upstream inflow fluxes. These findings help demonstrate how downstream discharge across cascade reservoirs amplifies nutrient flux disparities due to dam construction. Our study enhances the understanding of how cascade dam construction impacts nutrient dynamics, supporting the optimization of reservoir operation models and advancing scientific water resource management and conservation efforts.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.