Heesang Yang, Hyungjin Shin, Yeonhee Lee, Dabeen Lim, Na Yeon Kwon, AMITAVA RAKSHIT, Pargat Singh, Hyun Jin Kim, Kyeongwon Moon, In Su Kim
{"title":"Photoredox-Catalyzed Minisci-Type Acylation of Heterocyclic C–H Bonds with Amino Acid-Tethered Dihydropyridines","authors":"Heesang Yang, Hyungjin Shin, Yeonhee Lee, Dabeen Lim, Na Yeon Kwon, AMITAVA RAKSHIT, Pargat Singh, Hyun Jin Kim, Kyeongwon Moon, In Su Kim","doi":"10.1002/adsc.202401394","DOIUrl":null,"url":null,"abstract":"Conjugation of amino acids to bioactive molecules has emerged as a promising strategy for optimizing pharmacological profiles of lead candidates in drug discovery. This study describes a photocatalytic Minisci-type transfer reaction of N-acyl amino acids into various N-heterocycles. Notably, this protocol enables direct conjugation of amino acids into heterocyclic C–H bonds, eliminating the need for prefunctionalized substrates. A diverse array of N-heterocycles, amino acids, oligopeptides, and drugs were used to demonstrate the potential of the proposed approach. In addition, the importance of this approach is demonstrated through its application in the DNA-encoded library chemistry. Various synthetic transformations and preliminary mechanistic investigations were also explored.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401394","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugation of amino acids to bioactive molecules has emerged as a promising strategy for optimizing pharmacological profiles of lead candidates in drug discovery. This study describes a photocatalytic Minisci-type transfer reaction of N-acyl amino acids into various N-heterocycles. Notably, this protocol enables direct conjugation of amino acids into heterocyclic C–H bonds, eliminating the need for prefunctionalized substrates. A diverse array of N-heterocycles, amino acids, oligopeptides, and drugs were used to demonstrate the potential of the proposed approach. In addition, the importance of this approach is demonstrated through its application in the DNA-encoded library chemistry. Various synthetic transformations and preliminary mechanistic investigations were also explored.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.