Han Jia, Jinghua Han, Yajing Qi, Jie Liu, Yuen Ting Leung, Yau Hei Tung, Yuanyuan Chu, Tong Wang, Yi-Man Eva Fung, Yi Wang, Ying Li
{"title":"Small-Molecule Benzo-Phenoselenazine Derivatives for Multi-Subcellular Biomolecule Profiling","authors":"Han Jia, Jinghua Han, Yajing Qi, Jie Liu, Yuen Ting Leung, Yau Hei Tung, Yuanyuan Chu, Tong Wang, Yi-Man Eva Fung, Yi Wang, Ying Li","doi":"10.1002/anie.202419904","DOIUrl":null,"url":null,"abstract":"Elucidating the subcellular localization of RNAs and proteins is fundamental to understanding their biological functions. Genetically encoded proteins/enzymes provide an attractive approach to target many proteins of interest, but are limited to specific cell lines. Although small-molecule-based methods have been explored, a comprehensive system for profiling multiple locations in living cells, comparable to fusion-protein techniques, is yet to be established. In this study, we introduce a novel proximity labeling strategy employing a suite of small molecules derived from benzophenoselenazine (e.g., selenium-containing Nile Blue [SeNB]), which achieves proximity labeling through singlet oxygen generation upon near-infrared light activation in the presence of propargylamine. These SeNB compounds allow for selective labeling of RNAs and proteins within living cells, exhibiting a distinct preference for organelle membranes, which are systematically investigated via in vitro, computational, and in cellulo examinations. Our findings highlight the capabilities of SeNB derivatives as wash-free and genetics-free approaches to illuminate the subcellular localization of biological molecules with deep penetration and high spatial resolution. Moreover, SeNB derivatives are capable of elucidating inter-organelle interactions at the molecular level, as evidenced by proteomic and transcriptomic analyses, thus holding significant potential for advancing our understanding of cellular processes related to disease progression and therapeutic development.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"200 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the subcellular localization of RNAs and proteins is fundamental to understanding their biological functions. Genetically encoded proteins/enzymes provide an attractive approach to target many proteins of interest, but are limited to specific cell lines. Although small-molecule-based methods have been explored, a comprehensive system for profiling multiple locations in living cells, comparable to fusion-protein techniques, is yet to be established. In this study, we introduce a novel proximity labeling strategy employing a suite of small molecules derived from benzophenoselenazine (e.g., selenium-containing Nile Blue [SeNB]), which achieves proximity labeling through singlet oxygen generation upon near-infrared light activation in the presence of propargylamine. These SeNB compounds allow for selective labeling of RNAs and proteins within living cells, exhibiting a distinct preference for organelle membranes, which are systematically investigated via in vitro, computational, and in cellulo examinations. Our findings highlight the capabilities of SeNB derivatives as wash-free and genetics-free approaches to illuminate the subcellular localization of biological molecules with deep penetration and high spatial resolution. Moreover, SeNB derivatives are capable of elucidating inter-organelle interactions at the molecular level, as evidenced by proteomic and transcriptomic analyses, thus holding significant potential for advancing our understanding of cellular processes related to disease progression and therapeutic development.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.