A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-29 DOI:10.1038/s41467-024-53906-x
Jianwen Song, He Wang, Xue Meng, Wen Li, Ji Qi
{"title":"A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer","authors":"Jianwen Song, He Wang, Xue Meng, Wen Li, Ji Qi","doi":"10.1038/s41467-024-53906-x","DOIUrl":null,"url":null,"abstract":"<p>Activatable theranostic systems combining precise diagnosis and robust immune activation have significant potential in cancer treatment. Herein, we develop a versatile nanoplatform integrating hypoxia-activatable molecular imaging with effective photoimmunotherapy for cancer treatment. Our molecular probe features turn-on near-infrared-II (NIR-II) fluorescence and photoacoustic signals in hypoxic tumor environments. It also induces hypoxia-triggered photodynamic and photothermal effects, promoting immunogenic cell death and activating the STING pathway, engaging both innate and adaptive immunity. The molecular probe is formulated with a vascular disrupting agent to amplify the hypoxia-responsive phototheranostic properties, on which M1-like macrophage membrane is camouflaged to shield against premature release while conferring cancer-targeting affinity. The activatable NIR-II fluorescence and photoacoustic imaging enable precise tumor delineation, while the enhanced phototherapy activates tumor-specific cytotoxic T cells, impeding both primary and distant tumor progression and providing protective immunity against rechallenge in 4T1 tumor-bearing female mice. This work advances activatable theranostic protocols for image-guided immunotherapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"84 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53906-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Activatable theranostic systems combining precise diagnosis and robust immune activation have significant potential in cancer treatment. Herein, we develop a versatile nanoplatform integrating hypoxia-activatable molecular imaging with effective photoimmunotherapy for cancer treatment. Our molecular probe features turn-on near-infrared-II (NIR-II) fluorescence and photoacoustic signals in hypoxic tumor environments. It also induces hypoxia-triggered photodynamic and photothermal effects, promoting immunogenic cell death and activating the STING pathway, engaging both innate and adaptive immunity. The molecular probe is formulated with a vascular disrupting agent to amplify the hypoxia-responsive phototheranostic properties, on which M1-like macrophage membrane is camouflaged to shield against premature release while conferring cancer-targeting affinity. The activatable NIR-II fluorescence and photoacoustic imaging enable precise tumor delineation, while the enhanced phototherapy activates tumor-specific cytotoxic T cells, impeding both primary and distant tumor progression and providing protective immunity against rechallenge in 4T1 tumor-bearing female mice. This work advances activatable theranostic protocols for image-guided immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Ants integrate proprioception as well as visual context and efference copies to make robust predictions Probabilistic photonic computing with chaotic light Dynamic anti-correlations of water hydrogen bonds Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil Selective light-driven methane oxidation to ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1