Internal variability of the winter North Atlantic Oscillation longitudinal displacements

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-11-30 DOI:10.1038/s41612-024-00842-8
María Santolaria-Otín, Javier García-Serrano
{"title":"Internal variability of the winter North Atlantic Oscillation longitudinal displacements","authors":"María Santolaria-Otín, Javier García-Serrano","doi":"10.1038/s41612-024-00842-8","DOIUrl":null,"url":null,"abstract":"The winter North Atlantic Oscillation (NAO), one of the leading modes of atmospheric variability in the Northern Hemisphere and key driver of surface climate anomalies, was long considered to be spatially stable. Yet, its northern center-of-action – the Icelandic Low (IL) – shifted eastward in the late 1970s compared to the preceding decades of the mid-20th century. The responsible processes are still uncertain, particularly after the decline of the positive NAO trend in the 21st century. Here, we present observational and model evidence that the NAO-IL moves naturally alternating between two preferential locations, west/east of Iceland, with no need for changes in anthropogenic forcing or low-frequency oceanic variability. These recurrent longitudinal displacements of the NAO pattern appear linked to zonal changes in the fluctuations (not mean-state) of transient-eddy activity, emphasizing the relevance of internal atmospheric variability, and could represent a major source of uncertainty in regional climate prediction and projection.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00842-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00842-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The winter North Atlantic Oscillation (NAO), one of the leading modes of atmospheric variability in the Northern Hemisphere and key driver of surface climate anomalies, was long considered to be spatially stable. Yet, its northern center-of-action – the Icelandic Low (IL) – shifted eastward in the late 1970s compared to the preceding decades of the mid-20th century. The responsible processes are still uncertain, particularly after the decline of the positive NAO trend in the 21st century. Here, we present observational and model evidence that the NAO-IL moves naturally alternating between two preferential locations, west/east of Iceland, with no need for changes in anthropogenic forcing or low-frequency oceanic variability. These recurrent longitudinal displacements of the NAO pattern appear linked to zonal changes in the fluctuations (not mean-state) of transient-eddy activity, emphasizing the relevance of internal atmospheric variability, and could represent a major source of uncertainty in regional climate prediction and projection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冬季北大西洋涛动纵向位移的内部变率
冬季北大西洋涛动(NAO)是北半球大气变率的主要模态之一,也是地表气候异常的主要驱动因素,长期以来被认为在空间上是稳定的。然而,与20世纪中期的前几十年相比,它的北部活动中心——冰岛低压(IL)——在20世纪70年代末向东移动。负责任的过程仍然不确定,特别是在21世纪NAO正趋势减弱之后。在这里,我们提供了观测和模式证据,表明NAO-IL在冰岛西部/东部两个优先位置之间自然交替移动,不需要人为强迫或低频海洋变率的变化。这些NAO型态的周期性纵向位移似乎与瞬变涡活动波动(而非平均状态)的纬向变化有关,强调了大气内部变率的相关性,可能是区域气候预测和预估的一个主要不确定性来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4 Multifaceted changes in water availability with a warmer climate Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1