Co-cultivation of high-value microalgae species with filamentous microalgae for dairy wastewater treatment

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-11-28 DOI:10.1038/s41545-024-00421-7
Suvidha Gupta, Jorge M. Marchetti
{"title":"Co-cultivation of high-value microalgae species with filamentous microalgae for dairy wastewater treatment","authors":"Suvidha Gupta, Jorge M. Marchetti","doi":"10.1038/s41545-024-00421-7","DOIUrl":null,"url":null,"abstract":"The study examined the feasibility of co-culturing high-value microalgae sp. (Chlorella vulgaris (C.), and Scenedesmus (S.)) with filamentous microalgae sp. (Tribonema (T.) and Lyngbya (L.)) to remediate dairy wastewater (DW) and enhance biomass production and harvesting. The results showed that biomass productivity increased by 12‒174% compared to monocultures, and the best consortium was S:T. This consortium achieved the highest biomass productivity of 84.25 mg L−1 d−1 while removing 86.7% of chemical oxygen demand (COD), >88.7% of NO3−-N and >98.5% of PO43–-P. The study also tested the effect of harvesting time on the accumulation of biochemical components and found the optimal harvesting times of day 9 and day 11 to achieve maximum carbohydrate and lipid productivity, respectively. Additionally, the microalgae consortium S:T achieved a high biomass recovery of 78.5%, compared to 32.4% obtained for S. alone, highlighting its potential for efficient DW remediation and resource recovery.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-11"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00421-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00421-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study examined the feasibility of co-culturing high-value microalgae sp. (Chlorella vulgaris (C.), and Scenedesmus (S.)) with filamentous microalgae sp. (Tribonema (T.) and Lyngbya (L.)) to remediate dairy wastewater (DW) and enhance biomass production and harvesting. The results showed that biomass productivity increased by 12‒174% compared to monocultures, and the best consortium was S:T. This consortium achieved the highest biomass productivity of 84.25 mg L−1 d−1 while removing 86.7% of chemical oxygen demand (COD), >88.7% of NO3−-N and >98.5% of PO43–-P. The study also tested the effect of harvesting time on the accumulation of biochemical components and found the optimal harvesting times of day 9 and day 11 to achieve maximum carbohydrate and lipid productivity, respectively. Additionally, the microalgae consortium S:T achieved a high biomass recovery of 78.5%, compared to 32.4% obtained for S. alone, highlighting its potential for efficient DW remediation and resource recovery.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高价值微藻与丝状微藻共培养处理乳制品废水
本研究探讨了高价值微藻(小球藻(Chlorella vulgaris, C.)和Scenedesmus (S.))与丝状微藻(Tribonema, T.)和Lyngbya (L.))共培养对奶牛废水(DW)修复和提高生物质产量和收获的可行性。结果表明:与单作相比,生物量生产力提高了12-174%,最佳组合为S:T。该组合获得了最高的生物量生产力84.25 mg L−1 d−1,同时去除86.7%的化学需氧量(COD), 88.7%的NO3−-N和98.5%的PO43—P。本研究还测试了收获时间对生化成分积累的影响,发现收获时间分别为第9天和第11天,碳水化合物和脂质产量最高。此外,微藻联盟S:T实现了78.5%的高生物量回收率,而S:T单独获得了32.4%,突出了其有效修复DW和资源回收的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Trace metals induce microbial risk and antimicrobial resistance in biofilm in drinking water Packed bed optofluidic microreactors with Au decorated TiO2 nanoflowers for visible light photocatalytic water purification Transition from irrigation with untreated wastewater to treated wastewater and associated benefits and risks Internal electric field steering S-scheme charge transfer in ZnIn2S4/COF boosts H2O2 photosynthesis from water and air for sustainable disinfection Tailoring microbial redox with alternating current for efficient mineralization of refractory organic nitrogen compounds in wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1