Retinoic acid inhibition of cell proliferation via activation of CDKN1B signaling in the forebrain and spinal cord during mouse embryonic development

IF 2.5 Q2 MULTIDISCIPLINARY SCIENCES Beni-Suef University Journal of Basic and Applied Sciences Pub Date : 2024-11-30 DOI:10.1186/s43088-024-00582-x
Ahmed Said, Amira S. AbdElkhalek, Mariam Sherief, Lydia Amir, Maysem Samy, Mariam S. Nabil, Gehan Safwat, Ayman A. Diab, Karima Nasraldin
{"title":"Retinoic acid inhibition of cell proliferation via activation of CDKN1B signaling in the forebrain and spinal cord during mouse embryonic development","authors":"Ahmed Said,&nbsp;Amira S. AbdElkhalek,&nbsp;Mariam Sherief,&nbsp;Lydia Amir,&nbsp;Maysem Samy,&nbsp;Mariam S. Nabil,&nbsp;Gehan Safwat,&nbsp;Ayman A. Diab,&nbsp;Karima Nasraldin","doi":"10.1186/s43088-024-00582-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The active metabolite of vitamin A (retinol) is retinoic acid (RA). RA is essential for developing several organs as a signaling molecule that is tightly regulated during embryogenesis. We explored the teratogenic effects of RA on forebrain and spinal cord development modified by cyclin-dependent kinase inhibitor 1B (<i>CDKN1B</i>), as the mechanism underlying RA's teratogenic impacts requires further investigation. The study involved four groups of pregnant mice: the negative control group, the positive control group treated with dimethyl sulfoxide (DMSO) diluted in sunflower oil, the RA-treated group receiving a low dosage (5 mg/kg), and the RA-treated group receiving a high dosage (10 mg/kg). The treatment groups received daily intraperitoneal RA dissolved in DMSO and diluted with sunflower oil on gestational days 10.5, 11.5, and 12.5. On day 13.5 of pregnancy, the pregnant mice were euthanized by cervical dislocation, and immunohistochemical analyses of brain and spinal cord tissues were performed.</p><h3>Results</h3><p>Morphologically, we observed a decrease in the number of implantation sites and the presence of hematomas in several uterus areas in the high-dose RA (10 mg/kg) group. Additionally, RA was shown to cause adverse changes in uterine weight and length. RA treatment indicated elevated levels of <i>CDKN1B</i> expression in spinal cord development, the diencephalon, and the telencephalon.</p><h3>Conclusion</h3><p>Our findings demonstrated that by activating <i>CDKN1B</i> as an RA target gene for cell cycle arrest, an excess of RA during brain development in mouse embryos can induce cell undifferentiation during development.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00582-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00582-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The active metabolite of vitamin A (retinol) is retinoic acid (RA). RA is essential for developing several organs as a signaling molecule that is tightly regulated during embryogenesis. We explored the teratogenic effects of RA on forebrain and spinal cord development modified by cyclin-dependent kinase inhibitor 1B (CDKN1B), as the mechanism underlying RA's teratogenic impacts requires further investigation. The study involved four groups of pregnant mice: the negative control group, the positive control group treated with dimethyl sulfoxide (DMSO) diluted in sunflower oil, the RA-treated group receiving a low dosage (5 mg/kg), and the RA-treated group receiving a high dosage (10 mg/kg). The treatment groups received daily intraperitoneal RA dissolved in DMSO and diluted with sunflower oil on gestational days 10.5, 11.5, and 12.5. On day 13.5 of pregnancy, the pregnant mice were euthanized by cervical dislocation, and immunohistochemical analyses of brain and spinal cord tissues were performed.

Results

Morphologically, we observed a decrease in the number of implantation sites and the presence of hematomas in several uterus areas in the high-dose RA (10 mg/kg) group. Additionally, RA was shown to cause adverse changes in uterine weight and length. RA treatment indicated elevated levels of CDKN1B expression in spinal cord development, the diencephalon, and the telencephalon.

Conclusion

Our findings demonstrated that by activating CDKN1B as an RA target gene for cell cycle arrest, an excess of RA during brain development in mouse embryos can induce cell undifferentiation during development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
期刊最新文献
Retinoic acid inhibition of cell proliferation via activation of CDKN1B signaling in the forebrain and spinal cord during mouse embryonic development Rational design of cobalt oxide nanocubes arrays on Ni foam as durable and robust electrocatalyst for urea electro-oxidation A new record of avian reovirus genogroup clusters isolated and molecularly characterized in chickens in Egypt Retraction Note: Ameliorative effects of Artemisia and Echinacea extracts against hepato and cardiotoxicity induced by DMBA on albino rats: experimental and molecular docking analyses Improving lambs’ temperament, performance, and fecundity under three different housing conditions via oxidative stress reduction, metabolic and growth genes regulation by turmeric supplementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1