{"title":"Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer","authors":"Keming Cheng, Kai Shen, Chuang Li, Daqian Guo, Hao Wang, Jiang Wu","doi":"10.1002/elt2.73","DOIUrl":null,"url":null,"abstract":"<p>Weak response in long-wavelength infrared (LWIR) detection has long been a perennial concern, significantly limiting the reliability of applications. Avalanche photodetectors (APDs) offer excellent responsivity but are plagued by high dark current during the multiplication process. Here, we propose a high-performance type-II superlattices (T2SLs) LWIR APD to address these issues. The low Auger recombination rate of the InAs/InAsSb T2SLs absorption layer is exploited to reduce the dark current initially. AlAsSb with a low <i>k</i> value is employed as the multiplication layer to suppress device noise while maintaining sufficient gain. To facilitate carrier transport, the conduction band discontinuity is optimized by inserting an InAs/AlSb T2SLs stepped grading layer between the absorption and multiplication layers. As a result, the device exhibits excellent photoresponse at 8.4 μm at 100 K and maintains a low dark current density of 5.48 × 10<sup>−2</sup> A/cm<sup>2</sup>. Specifically, it achieves a maximum gain of 366, a responsivity of 650 A/W, and a quantum efficiency of 26.28% under breakdown voltage. This design offers a promising solution for the advancement of LWIR detection.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.73","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Weak response in long-wavelength infrared (LWIR) detection has long been a perennial concern, significantly limiting the reliability of applications. Avalanche photodetectors (APDs) offer excellent responsivity but are plagued by high dark current during the multiplication process. Here, we propose a high-performance type-II superlattices (T2SLs) LWIR APD to address these issues. The low Auger recombination rate of the InAs/InAsSb T2SLs absorption layer is exploited to reduce the dark current initially. AlAsSb with a low k value is employed as the multiplication layer to suppress device noise while maintaining sufficient gain. To facilitate carrier transport, the conduction band discontinuity is optimized by inserting an InAs/AlSb T2SLs stepped grading layer between the absorption and multiplication layers. As a result, the device exhibits excellent photoresponse at 8.4 μm at 100 K and maintains a low dark current density of 5.48 × 10−2 A/cm2. Specifically, it achieves a maximum gain of 366, a responsivity of 650 A/W, and a quantum efficiency of 26.28% under breakdown voltage. This design offers a promising solution for the advancement of LWIR detection.