Ultra-tough light-curing ionogels for UV shielding

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-11-30 DOI:10.1038/s43246-024-00702-1
Zeyu Zhang, Dejun Peng, Xueyan Shang, Xin Zhao, Shixue Ren, Jiuyin Pang, Shujun Li
{"title":"Ultra-tough light-curing ionogels for UV shielding","authors":"Zeyu Zhang, Dejun Peng, Xueyan Shang, Xin Zhao, Shixue Ren, Jiuyin Pang, Shujun Li","doi":"10.1038/s43246-024-00702-1","DOIUrl":null,"url":null,"abstract":"The mechanical properties of polyurethane ionogels prepared by UV light-curing are usually inferior to those of conventional polyurethanes. Highly entangled polymer chain networks with chemical crosslinking can potentially address this problem. Here, we prepare ionogels (PU-HRs) using UV curing technology with esterified rutin as a cross-linking agent. After optimization of the preparation process by response surface methodology, we obtain PU-HRs with a tensile strength of 34.96 MPa and toughness as high as 88.11 MJ m−3 (1.26-fold higher than that of silk from the silkworm, Bombyx mori (70 MJ m−3)). The high strength and toughness of PU-HR are mainly attributed to the three-dimensional cross-linked network structure formed by the “rigid-flexible” esterified rutin, the micro-phase separation structure between the soft-chain fragments, and the hard-chain fragments that form stable interfacial regions. These ionogels have great prospects in sunscreen coating applications, such as for sunscreen umbrellas and automotive or architectural sunscreen glass. Polyurethane ionogels can be made with UV light curing but suffer from low mechanical properties compared to conventional polyurethane. Here, robust UV light curable ionogels are made by using prepolymers containing carbon-carbon double bonds as monomers which cross-links to form entangled polymer networks.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00702-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00702-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of polyurethane ionogels prepared by UV light-curing are usually inferior to those of conventional polyurethanes. Highly entangled polymer chain networks with chemical crosslinking can potentially address this problem. Here, we prepare ionogels (PU-HRs) using UV curing technology with esterified rutin as a cross-linking agent. After optimization of the preparation process by response surface methodology, we obtain PU-HRs with a tensile strength of 34.96 MPa and toughness as high as 88.11 MJ m−3 (1.26-fold higher than that of silk from the silkworm, Bombyx mori (70 MJ m−3)). The high strength and toughness of PU-HR are mainly attributed to the three-dimensional cross-linked network structure formed by the “rigid-flexible” esterified rutin, the micro-phase separation structure between the soft-chain fragments, and the hard-chain fragments that form stable interfacial regions. These ionogels have great prospects in sunscreen coating applications, such as for sunscreen umbrellas and automotive or architectural sunscreen glass. Polyurethane ionogels can be made with UV light curing but suffer from low mechanical properties compared to conventional polyurethane. Here, robust UV light curable ionogels are made by using prepolymers containing carbon-carbon double bonds as monomers which cross-links to form entangled polymer networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紫外线屏蔽的超强光固化离子凝胶
紫外光固化制备的聚氨酯离子凝胶的力学性能通常不如常规聚氨酯。具有化学交联的高度纠缠的聚合物链网络可以潜在地解决这个问题。本文以酯化芦丁为交联剂,采用紫外固化技术制备了离子凝胶(pu - hr)。通过响应面法对制备工艺进行优化,得到的pu - hr抗拉强度为34.96 MPa,韧性高达88.11 MJ m−3,是家蚕丝(70 MJ m−3)的1.26倍。PU-HR具有较高的强度和韧性,主要归功于酯化芦丁形成的“刚柔”交联的三维网络结构、软链片段之间的微相分离结构和形成稳定界面区域的硬链片段。这些离子凝胶在防晒涂料中有很大的应用前景,如防晒伞和汽车或建筑防晒玻璃。聚氨酯离子凝胶可以用紫外光固化制成,但与传统聚氨酯相比,其机械性能较低。在这里,通过使用含有碳-碳双键的预聚物作为单体,通过交联形成纠缠的聚合物网络,可以制成坚固的紫外光固化离子凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1