Extreme ultraviolet lithography

IF 50.1 Q1 MULTIDISCIPLINARY SCIENCES Nature reviews. Methods primers Pub Date : 2024-11-28 DOI:10.1038/s43586-024-00361-z
Dimitrios Kazazis, Jara Garcia Santaclara, Jan van Schoot, Iacopo Mochi, Yasin Ekinci
{"title":"Extreme ultraviolet lithography","authors":"Dimitrios Kazazis, Jara Garcia Santaclara, Jan van Schoot, Iacopo Mochi, Yasin Ekinci","doi":"10.1038/s43586-024-00361-z","DOIUrl":null,"url":null,"abstract":"Extreme ultraviolet lithography (EUVL) was recently adopted by the semiconductor industry as the leading-edge lithography technique for continued miniaturization of semiconductor devices in line with Moore’s law. EUVL has emerged as a critical technique, taking advantage of shorter wavelengths to achieve nanoscale feature sizes with higher precision and lower defect rates than previous lithography methods. This Primer comprehensively explores the technical evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, highlighting innovative approaches in source technology, resist materials and optical systems developed to meet the stringent requirements of high-volume manufacturing. Beginning with an overview of the fundamental principles of photolithography, the main components and functionalities of EUV scanners are described. It also covers exposure tools that support research and early development phases. Key topics — such as image formation, photoresist platforms and pattern transfer — are explained with an emphasis on improving resolution and throughput. Additionally, persistent challenges are addressed, such as stochastic effects and resist sensitivity, with insights provided into future directions for EUVL, including high-numerical aperture systems and novel resist platforms. This Primer aims to present a detailed review of current EUVL capabilities and project the future developments and evolution of EUVL in semiconductor manufacturing. Extreme ultraviolet (EUV) lithography is used to fabricate features with nanometre-scale resolution. This Primer explores how EUV lithography can be applied to manufacture semiconductor devices, explaining lithographic tools, photoresists and potential future developments.","PeriodicalId":74250,"journal":{"name":"Nature reviews. Methods primers","volume":" ","pages":"1-15"},"PeriodicalIF":50.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Methods primers","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43586-024-00361-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme ultraviolet lithography (EUVL) was recently adopted by the semiconductor industry as the leading-edge lithography technique for continued miniaturization of semiconductor devices in line with Moore’s law. EUVL has emerged as a critical technique, taking advantage of shorter wavelengths to achieve nanoscale feature sizes with higher precision and lower defect rates than previous lithography methods. This Primer comprehensively explores the technical evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, highlighting innovative approaches in source technology, resist materials and optical systems developed to meet the stringent requirements of high-volume manufacturing. Beginning with an overview of the fundamental principles of photolithography, the main components and functionalities of EUV scanners are described. It also covers exposure tools that support research and early development phases. Key topics — such as image formation, photoresist platforms and pattern transfer — are explained with an emphasis on improving resolution and throughput. Additionally, persistent challenges are addressed, such as stochastic effects and resist sensitivity, with insights provided into future directions for EUVL, including high-numerical aperture systems and novel resist platforms. This Primer aims to present a detailed review of current EUVL capabilities and project the future developments and evolution of EUVL in semiconductor manufacturing. Extreme ultraviolet (EUV) lithography is used to fabricate features with nanometre-scale resolution. This Primer explores how EUV lithography can be applied to manufacture semiconductor devices, explaining lithographic tools, photoresists and potential future developments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
46.10
自引率
0.00%
发文量
0
期刊最新文献
Low-intensity focused ultrasound for human neuromodulation Low-intensity focused ultrasound for human neuromodulation mRNA m6A detection mRNA m6A detection X-ray absorption spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1