Mg-Ion-Based Electrochemical Synapse With Superior Retention

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-10-14 DOI:10.1109/LED.2024.3479248
Heebum Kang;Kyumin Lee;Seungkwon Hwang;Hyunsang Hwang
{"title":"Mg-Ion-Based Electrochemical Synapse With Superior Retention","authors":"Heebum Kang;Kyumin Lee;Seungkwon Hwang;Hyunsang Hwang","doi":"10.1109/LED.2024.3479248","DOIUrl":null,"url":null,"abstract":"We introduce a novel all-solid-state Mg-ion-based electrochemical RAM (Mg-ECRAM) that utilizes a highly stable MgF2 electrolyte known for its high ionic conductivity (\n<inline-formula> <tex-math>$\\sigma _{\\text {ion}}\\text {)}$ </tex-math></inline-formula>\n and low electrical conductivity (\n<inline-formula> <tex-math>$\\sigma \\text {)}$ </tex-math></inline-formula>\n. Additionally, crystalline WO\n<inline-formula> <tex-math>$_{{2}.{8}}$ </tex-math></inline-formula>\n (C-WO\n<inline-formula> <tex-math>$_{{2}.{8}}\\text {)}$ </tex-math></inline-formula>\n is used as the channel material because of its excellent ion diffusivity (D\n<inline-formula> <tex-math>$_{\\text {ion}}\\text {)}$ </tex-math></inline-formula>\n. Comprehensively, our findings reveal nearly perfect weight update linearity and exceptional retention capabilities, lasting approximately six years. These results indicate that Mg-ions are suitable for ECRAM systems, offering desirable and dependable synaptic properties. Moreover, the physical intercalation of Mg-ions into the WO\n<inline-formula> <tex-math>$_{{2}.{8}}$ </tex-math></inline-formula>\n channel is confirmed in real-time by the sequential modulation of Raman peaks, which correspond to the levels of potentiation or depression.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2557-2560"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716487/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel all-solid-state Mg-ion-based electrochemical RAM (Mg-ECRAM) that utilizes a highly stable MgF2 electrolyte known for its high ionic conductivity ( $\sigma _{\text {ion}}\text {)}$ and low electrical conductivity ( $\sigma \text {)}$ . Additionally, crystalline WO $_{{2}.{8}}$ (C-WO $_{{2}.{8}}\text {)}$ is used as the channel material because of its excellent ion diffusivity (D $_{\text {ion}}\text {)}$ . Comprehensively, our findings reveal nearly perfect weight update linearity and exceptional retention capabilities, lasting approximately six years. These results indicate that Mg-ions are suitable for ECRAM systems, offering desirable and dependable synaptic properties. Moreover, the physical intercalation of Mg-ions into the WO $_{{2}.{8}}$ channel is confirmed in real-time by the sequential modulation of Raman peaks, which correspond to the levels of potentiation or depression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有优异保留率的镁离子基电化学突触
我们介绍了一种新型的全固态mg离子基电化学RAM (Mg-ECRAM),它利用高度稳定的MgF2电解质,以其高离子电导率($\sigma _{\text {ion}}\text{)}$和低电导率($\sigma \text{)}$而闻名。此外,结晶WO $_{{2}。{2}}$ (c - o $ {{2};{8}}\text{)}$被用作通道材料是因为它具有优异的离子扩散率(D $_{\text {ion}}\text{)}$。综合而言,我们的研究结果揭示了近乎完美的权重更新线性和卓越的保留能力,持续了大约六年。这些结果表明,镁离子适合于ECRAM系统,提供理想和可靠的突触特性。此外,mmg离子在WO ${{2}中的物理插层。{8}}$通道通过拉曼峰的顺序调制实时确认,这些拉曼峰对应于增强或抑制的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications IEEE Electron Device Letters Information for Authors IEEE Transactions on Electron Devices Table of Contents EDS Meetings Calendar 2025 Index IEEE Electron Device Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1