{"title":"Water retention behavior and microstructural evolution of GMZ bentonite granules upon wetting and drying for deep geological disposal","authors":"Fan Peng, Chen Bo, De’an Sun, You Gao","doi":"10.1007/s11440-024-02442-5","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with compacted block, the bentonite granules (BG) were increasingly considered as feasible sealing materials for deep geological disposal, due to its superior operationality and installation efficiency. However, further studies are needed to assess the hydraulic response and microstructural evolution of BG. This work focused on the water retention behavior of BG specimens prepared with different grading curves and void ratios (0.6, 0.8 and 1.0), under confined/unconfined conditions following wetting and drying paths. The specimens’ pore structure and its evolution were studied using mercury intrusion porosimetry. Results indicated that the water retention capacity was generally unique at high suctions (> about 10 MPa) due to adsorption mechanism, while it was related to pore structure at low suctions. Under confined condition, wetting caused macropore (i.e., inter-aggregate/pellet pores) compression and pore structure rearrangement, while the inter-particle pores kept almost unchanged. BG specimen with more and coarser granules initially exhibited more and bigger macropores, and its initial granular structure was progressively lost upon wetting. Meanwhile, the volume expansion was relatively limited upon wetting at high suctions, below which it gradually became obvious. Comparatively, wetting caused macropore enlargement and even cracks generation under unconfined condition. After saturation under confined condition, drying caused initially macropore contraction and the granular structure was somewhat recovered that could result in further opening of cracks. Besides, the shrinking rate gradually became slow at suction > about 30 MPa. This study is conducive to comprehension and design of engineered barrier system for deep geological disposal.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 12","pages":"7821 - 7833"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02442-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with compacted block, the bentonite granules (BG) were increasingly considered as feasible sealing materials for deep geological disposal, due to its superior operationality and installation efficiency. However, further studies are needed to assess the hydraulic response and microstructural evolution of BG. This work focused on the water retention behavior of BG specimens prepared with different grading curves and void ratios (0.6, 0.8 and 1.0), under confined/unconfined conditions following wetting and drying paths. The specimens’ pore structure and its evolution were studied using mercury intrusion porosimetry. Results indicated that the water retention capacity was generally unique at high suctions (> about 10 MPa) due to adsorption mechanism, while it was related to pore structure at low suctions. Under confined condition, wetting caused macropore (i.e., inter-aggregate/pellet pores) compression and pore structure rearrangement, while the inter-particle pores kept almost unchanged. BG specimen with more and coarser granules initially exhibited more and bigger macropores, and its initial granular structure was progressively lost upon wetting. Meanwhile, the volume expansion was relatively limited upon wetting at high suctions, below which it gradually became obvious. Comparatively, wetting caused macropore enlargement and even cracks generation under unconfined condition. After saturation under confined condition, drying caused initially macropore contraction and the granular structure was somewhat recovered that could result in further opening of cracks. Besides, the shrinking rate gradually became slow at suction > about 30 MPa. This study is conducive to comprehension and design of engineered barrier system for deep geological disposal.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.