{"title":"NIR-II Photoacoustic Imaging-Guided Chemo-Photothermal Therapy Using PA1094T Combined with Anti-CD47 Antibody: Activating Pyroptosis against Orthotopic Glioblastoma.","authors":"Shiying Li, Fanchu Zeng, Qi Zhou, Lanqing Li, Hsuan Lo, Jiali Chen, Zhijin Fan, Guojia Huang, Liming Nie","doi":"10.1002/adhm.202403108","DOIUrl":null,"url":null,"abstract":"<p><p>Treating glioblastoma (GBM) with single-agent chemotherapy is often ineffective due to inefficient drug delivery and the immunosuppressive tumor microenvironment, which leads to drug resistance. Strategies that activate programmed cell death mechanisms and repolarized tumor-associated macrophages toward an antitumoral M1-like phenotype can help reverse the immunosuppressive tumor microenvironment. In this study, a novel approach using NIR-II (1000-1700 nm) photoacoustic imaging (PAI)-guided chemo-photothermal therapy is presented. NIR-II imaging, with its superior tissue penetration and reduced background noise, enables precise tumor targeting. A targeted nano prodrug is developed using poly (lactic-co-glycolic acid) nanoparticles loaded with A1094 dye and temozolomide (TMZ), coupled with an anti-CD47 antibody. This system employs synergistic chemo-photothermal therapy activated by NIR-II light, inducing apoptosis, pyroptosis, and T-cell activation. PAI provides rapid, point-of-care GBM diagnosis, and highlighted the effective targeting of the PA1094T nanoplatform. In a recurrent GBM model, the combination of PA1094T and anti-CD47 antibody significantly enhances cancer cell phagocytosis and effectively remodels the immunosuppressive microenvironment, resulting in better therapeutic outcomes compared to conventional therapies. These results indicate that this NIR-II PAI-guided drug cocktail therapy is a promising strategy for treating GBM, potentially addressing drug resistance and improving treatment efficacy through enhanced targeting and immunomodulation.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403108"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403108","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Treating glioblastoma (GBM) with single-agent chemotherapy is often ineffective due to inefficient drug delivery and the immunosuppressive tumor microenvironment, which leads to drug resistance. Strategies that activate programmed cell death mechanisms and repolarized tumor-associated macrophages toward an antitumoral M1-like phenotype can help reverse the immunosuppressive tumor microenvironment. In this study, a novel approach using NIR-II (1000-1700 nm) photoacoustic imaging (PAI)-guided chemo-photothermal therapy is presented. NIR-II imaging, with its superior tissue penetration and reduced background noise, enables precise tumor targeting. A targeted nano prodrug is developed using poly (lactic-co-glycolic acid) nanoparticles loaded with A1094 dye and temozolomide (TMZ), coupled with an anti-CD47 antibody. This system employs synergistic chemo-photothermal therapy activated by NIR-II light, inducing apoptosis, pyroptosis, and T-cell activation. PAI provides rapid, point-of-care GBM diagnosis, and highlighted the effective targeting of the PA1094T nanoplatform. In a recurrent GBM model, the combination of PA1094T and anti-CD47 antibody significantly enhances cancer cell phagocytosis and effectively remodels the immunosuppressive microenvironment, resulting in better therapeutic outcomes compared to conventional therapies. These results indicate that this NIR-II PAI-guided drug cocktail therapy is a promising strategy for treating GBM, potentially addressing drug resistance and improving treatment efficacy through enhanced targeting and immunomodulation.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.