{"title":"Spatial transcriptomics in focal cortical dysplasia type IIb.","authors":"Yujiao Wang, Yihe Wang, Linai Guo, Chunhao Shen, Yongjuan Fu, Penghu Wei, Yongzhi Shan, Qian Wu, Yue-Shan Piao, Guoguang Zhao","doi":"10.1186/s40478-024-01897-7","DOIUrl":null,"url":null,"abstract":"<p><p>Focal cortical dysplasia (FCD) type IIb (FCD IIb) is an epileptogenic malformation of the neocortex that is characterized by cortical dyslamination, dysmorphic neurons (DNs) and balloon cells (BCs). Approximately 30-60% of lesions are associated with brain somatic mutations in the mTOR pathway. Herein, we investigated the transcriptional changes around the DNs and BCs regions in freshly frozen brain samples from three patients with FCD IIb by using spatial transcriptomics. We demonstrated that the DNs region in a gene enrichment network enriched for the mTOR signalling pathway, autophagy and the ubiquitin‒proteasome system, additionally which are involved in regulating membrane potential, may contribute to epileptic discharge. Moreover, differential expression analysis further demonstrated stronger expression of components of the inflammatory response and complement activation in the BCs region. And the DNs and BCs regions exhibited common functional modules, including regulation of cell morphogenesis and developmental growth. Furthermore, the expression of representative proteins in the functional enrichment module mentioned above was increased in the lesions of FCD IIb, such as p62 in DNs and BCs, UCHL1 in DNs, and C3 and CLU in BCs, which was confirmed via immunohistochemistry. Collectively, we constructed a spatial map showing the potential effects and functions of the DNs and BCs regions at the transcriptomic level and generated publicly available data on human FCD IIb to facilitate future research on human epileptogenesis.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"185"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01897-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Focal cortical dysplasia (FCD) type IIb (FCD IIb) is an epileptogenic malformation of the neocortex that is characterized by cortical dyslamination, dysmorphic neurons (DNs) and balloon cells (BCs). Approximately 30-60% of lesions are associated with brain somatic mutations in the mTOR pathway. Herein, we investigated the transcriptional changes around the DNs and BCs regions in freshly frozen brain samples from three patients with FCD IIb by using spatial transcriptomics. We demonstrated that the DNs region in a gene enrichment network enriched for the mTOR signalling pathway, autophagy and the ubiquitin‒proteasome system, additionally which are involved in regulating membrane potential, may contribute to epileptic discharge. Moreover, differential expression analysis further demonstrated stronger expression of components of the inflammatory response and complement activation in the BCs region. And the DNs and BCs regions exhibited common functional modules, including regulation of cell morphogenesis and developmental growth. Furthermore, the expression of representative proteins in the functional enrichment module mentioned above was increased in the lesions of FCD IIb, such as p62 in DNs and BCs, UCHL1 in DNs, and C3 and CLU in BCs, which was confirmed via immunohistochemistry. Collectively, we constructed a spatial map showing the potential effects and functions of the DNs and BCs regions at the transcriptomic level and generated publicly available data on human FCD IIb to facilitate future research on human epileptogenesis.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.