Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy.

IF 5.7 2区 生物学 Q1 BIOLOGY Biology Direct Pub Date : 2024-11-29 DOI:10.1186/s13062-024-00556-0
Zhenhao Lin, Fangjie Dai, Bo Li, Yongchao Zhao, Changqian Wang
{"title":"Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy.","authors":"Zhenhao Lin, Fangjie Dai, Bo Li, Yongchao Zhao, Changqian Wang","doi":"10.1186/s13062-024-00556-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extrachromosomal circular DNAs (eccDNAs) are commonly found in various tumors and play a critical role in promoting oncogenesis. However, little is known about the characteristics and nature of eccDNAs in human heart failure. The aim of this study was to comprehensively analyze eccDNAs in human heart failure caused by dilated cardiomyopathy (DCM) and explore their potential functions.</p><p><strong>Methods: </strong>Circle-Seq and RNA-Seq were performed in cardiac tissue samples obtained from patients with DCM and healthy controls to identify eccDNAs and corresponding genes. Inward PCR, outward PCR and Sanger sequencing were conducted to validate the circular structure of eccDNAs. Bioinformatics was employed to probe the transcriptional activity of eccDNAs and their potential roles in the development of DCM. Ligase assisted minicircle accumulation strategy was used to synthesize a 500 bp circular DNA with a random sequence.</p><p><strong>Results: </strong>EccDNAs originated from all chromosomes, with the majority being less than 1 kb in size and about half containing genes or gene fragments. They were derived from specific repeat elements and primarily mapped to 5'UTR, 3'UTR, and CpG islands. Gene-rich chromosomes 17 and 19 exhibited higher eccDNA enrichment. Sequence motifs flanking eccDNA junction sites displayed frequent nucleotide repeats. The circular structure of eccDNAs were confirmed. Integration of Circle-Seq and RNA-Seq data identified that large eccDNAs can be directly transcribed in non-dividing cardiomyocytes, indicating their potential roles in gene expression. Small circular DNA elicited a stronger cytokine response than linear DNA with the same sequence.</p><p><strong>Conclusions: </strong>Our work provided a detailed profiling of eccDNAs in both healthy and DCM hearts and demonstrated the potential functions of both large and small eccDNAs. These findings enhance the comprehension of the role of eccDNAs in cardiac pathophysiology and establish a theoretical foundation for future investigations on eccDNAs in DCM.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"125"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00556-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Extrachromosomal circular DNAs (eccDNAs) are commonly found in various tumors and play a critical role in promoting oncogenesis. However, little is known about the characteristics and nature of eccDNAs in human heart failure. The aim of this study was to comprehensively analyze eccDNAs in human heart failure caused by dilated cardiomyopathy (DCM) and explore their potential functions.

Methods: Circle-Seq and RNA-Seq were performed in cardiac tissue samples obtained from patients with DCM and healthy controls to identify eccDNAs and corresponding genes. Inward PCR, outward PCR and Sanger sequencing were conducted to validate the circular structure of eccDNAs. Bioinformatics was employed to probe the transcriptional activity of eccDNAs and their potential roles in the development of DCM. Ligase assisted minicircle accumulation strategy was used to synthesize a 500 bp circular DNA with a random sequence.

Results: EccDNAs originated from all chromosomes, with the majority being less than 1 kb in size and about half containing genes or gene fragments. They were derived from specific repeat elements and primarily mapped to 5'UTR, 3'UTR, and CpG islands. Gene-rich chromosomes 17 and 19 exhibited higher eccDNA enrichment. Sequence motifs flanking eccDNA junction sites displayed frequent nucleotide repeats. The circular structure of eccDNAs were confirmed. Integration of Circle-Seq and RNA-Seq data identified that large eccDNAs can be directly transcribed in non-dividing cardiomyocytes, indicating their potential roles in gene expression. Small circular DNA elicited a stronger cytokine response than linear DNA with the same sequence.

Conclusions: Our work provided a detailed profiling of eccDNAs in both healthy and DCM hearts and demonstrated the potential functions of both large and small eccDNAs. These findings enhance the comprehension of the role of eccDNAs in cardiac pathophysiology and establish a theoretical foundation for future investigations on eccDNAs in DCM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
期刊最新文献
Integrating Circle-Seq with transcriptomics reveals genome-wide characterization of extrachromosomal circular DNA for dilated cardiomyopathy. Soft X-ray tomography analysis of mitochondria dynamics in Saccharomyces cerevisiae. BRD4 sustains p63 transcriptional program in keratinocytes. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Bone metabolism associated with annual antler regeneration: a deer insight into osteoporosis reversal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1