IGFBP5 affects cardiomyocyte survival and functional recovery in mice following myocardial ischemia.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-11-29 DOI:10.1038/s42003-024-07304-0
Qingqing Zhu, Xinyi Lu, Mengli Chen, Ting Zhang, Mengsha Shi, Wenming Yao, Haifeng Zhang, Rongrong Gao, Xinli Li, Yanli Zhou, Shengen Liao
{"title":"IGFBP5 affects cardiomyocyte survival and functional recovery in mice following myocardial ischemia.","authors":"Qingqing Zhu, Xinyi Lu, Mengli Chen, Ting Zhang, Mengsha Shi, Wenming Yao, Haifeng Zhang, Rongrong Gao, Xinli Li, Yanli Zhou, Shengen Liao","doi":"10.1038/s42003-024-07304-0","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-like growth factor-binding protein 5 (IGFBP5) has been shown to be useful for the diagnosis and treatment of multiple tumors and cerebrovascular diseases. However, it is unknown whether IGFBP5 is involved in myocardial repair following myocardial infarction (MI). Here we show high expression of IGFBP5 in multiple models of ischemic and hypoxic injury. IGFBP5 affected the proliferation of neonatal rat cardiomyocytes (NRCMs) and the cardiomyocyte apoptosis induced by oxygen-glucose deprivation (OGD). Subsequently, heart-specific IGFBP5 knockdown inhibited myocardial apoptosis and increased cardiomyocyte proliferation in mice with MI. During the chronic remodeling stage, heart-specific regulation of IGFBP5 ameliorated pathological cardiac remodeling and dysfunction. Mechanistically, IGFBP5 regulated cardiomyocyte survival through the insulin-like growth factor 1 (IGF1) receptor (IGF1R)/protein kinase B (PKB/AKT) pathway. In summary, our results provide mechanistic insights into the effect of IGFBP5 on cardiomyocyte during cardiac repair. IGFBP5 may represent a therapeutic target for myocardial ischemic injury.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1594"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07304-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin-like growth factor-binding protein 5 (IGFBP5) has been shown to be useful for the diagnosis and treatment of multiple tumors and cerebrovascular diseases. However, it is unknown whether IGFBP5 is involved in myocardial repair following myocardial infarction (MI). Here we show high expression of IGFBP5 in multiple models of ischemic and hypoxic injury. IGFBP5 affected the proliferation of neonatal rat cardiomyocytes (NRCMs) and the cardiomyocyte apoptosis induced by oxygen-glucose deprivation (OGD). Subsequently, heart-specific IGFBP5 knockdown inhibited myocardial apoptosis and increased cardiomyocyte proliferation in mice with MI. During the chronic remodeling stage, heart-specific regulation of IGFBP5 ameliorated pathological cardiac remodeling and dysfunction. Mechanistically, IGFBP5 regulated cardiomyocyte survival through the insulin-like growth factor 1 (IGF1) receptor (IGF1R)/protein kinase B (PKB/AKT) pathway. In summary, our results provide mechanistic insights into the effect of IGFBP5 on cardiomyocyte during cardiac repair. IGFBP5 may represent a therapeutic target for myocardial ischemic injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Observation of E-cadherin adherens junction dynamics with metal-induced energy transfer imaging and spectroscopy. A function-based mapping of sensory integration along the cortical hierarchy. Disrupted working memory event-related network dynamics in multiple sclerosis. IGFBP5 affects cardiomyocyte survival and functional recovery in mice following myocardial ischemia. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1