Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Experimental cell research Pub Date : 2025-01-15 Epub Date: 2024-11-28 DOI:10.1016/j.yexcr.2024.114355
Chunwei Jiao, Jinshou Qiu, Congcong Gong, Xiaoyi Li, Huijia Liang, Chunyan He, Sien Cen, Yizhen Xie
{"title":"Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway.","authors":"Chunwei Jiao, Jinshou Qiu, Congcong Gong, Xiaoyi Li, Huijia Liang, Chunyan He, Sien Cen, Yizhen Xie","doi":"10.1016/j.yexcr.2024.114355","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer represents a persistent global health challenge, with multidrug resistance (MDR) posing a significant obstacle to effective treatment. In this study, we investigate the potential of Ganoderma lucidum extract (GLE) in reversing MDR in breast cancer and delve into the underlying mechanisms. We establish a robust in vitro 3D model of breast cancer with acquired MDR induced by paclitaxel. Utilizing the CCK-8 method, we assess the impact of GLE on cytotoxic drug sensitivity to determine its in vitro MDR reversal activity. Our results reveal that GLE enhances the toxicity of paclitaxel in breast cancer cells by inhibiting the ATPase activity of P-glycoprotein (P-gp) and increasing the intracellular and extracellular excretion of P-gp substrates, all without significantly altering P-gp protein expression. Additionally, GLE inhibits the phosphorylation of ERK1/2, suggesting that the enhanced sensitivity of breast cancer cells to paclitaxel by GLE is associated with the MAPK pathway. These findings indicate that GLE may inhibit P-gp-mediated drug efflux via the MAPK pathway, thus effectively overcoming paclitaxel resistance in breast cancer. This study provides valuable insights into the potential clinical applications of GLE in reversing multidrug resistance, offering hope for improved breast cancer treatment strategies.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114355"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2024.114355","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer represents a persistent global health challenge, with multidrug resistance (MDR) posing a significant obstacle to effective treatment. In this study, we investigate the potential of Ganoderma lucidum extract (GLE) in reversing MDR in breast cancer and delve into the underlying mechanisms. We establish a robust in vitro 3D model of breast cancer with acquired MDR induced by paclitaxel. Utilizing the CCK-8 method, we assess the impact of GLE on cytotoxic drug sensitivity to determine its in vitro MDR reversal activity. Our results reveal that GLE enhances the toxicity of paclitaxel in breast cancer cells by inhibiting the ATPase activity of P-glycoprotein (P-gp) and increasing the intracellular and extracellular excretion of P-gp substrates, all without significantly altering P-gp protein expression. Additionally, GLE inhibits the phosphorylation of ERK1/2, suggesting that the enhanced sensitivity of breast cancer cells to paclitaxel by GLE is associated with the MAPK pathway. These findings indicate that GLE may inhibit P-gp-mediated drug efflux via the MAPK pathway, thus effectively overcoming paclitaxel resistance in breast cancer. This study provides valuable insights into the potential clinical applications of GLE in reversing multidrug resistance, offering hope for improved breast cancer treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
期刊最新文献
ALKBH5 promotes T-cell acute lymphoblastic leukemia growth via m6A-guided epigenetic inhibition of miR-20a-5p. Mechanism of METTL3 in the proliferation, invasion, and migration of intrahepatic cholangiocarcinoma cells via m6A modification. Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway. Knockdown of PELI1 promotes Th2 and Treg cell differentiation in juvenile idiopathic arthritis. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1