Abdu R Rahman, Tahir Munir, Maheen Fazal, Salman Arif Cheema, Mukhtiar Hussain Bhayo
{"title":"Climatic determinants of monkeypox transmission: A multi-national analysis using generalized count mixed models.","authors":"Abdu R Rahman, Tahir Munir, Maheen Fazal, Salman Arif Cheema, Mukhtiar Hussain Bhayo","doi":"10.1016/j.jviromet.2024.115076","DOIUrl":null,"url":null,"abstract":"<p><p>Monkeypox (mpox) is a rare viral disease that can cause severe illness in humans, with outbreaks occurring primarily in central and western Africa. Well-coordinated and synchronized efforts are necessary to understand the factors involved in disease transmission and develop effective health interventions. The aim of this study is to assess the relationship between climate factors and daily mpox cases, as well as to identify the most suitable predictive model for transmission. We analyzed confirmed mpox cases from May 5, 2022, to February 14, 2023, in the 33 most affected countries. We employed and compared the efficiency of four models: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial. We found a significant correlation between climate factors and daily mpox cases across most of the studied countries. Specifically, for each 1°C increase in the heat index (HI), daily cases increased by 7.7 % (IRR = 1.077, p < 0.05). Conversely, higher relative humidity (RH) decreased daily cases by 2.4 %, and increased wind speed (WS) reduced them by 7.3 %. The HI positively influences mpox spread, while RH and WS act as protective factors. Public health officials should consider these climate influences when developing targeted interventions.</p>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":" ","pages":"115076"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jviromet.2024.115076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Monkeypox (mpox) is a rare viral disease that can cause severe illness in humans, with outbreaks occurring primarily in central and western Africa. Well-coordinated and synchronized efforts are necessary to understand the factors involved in disease transmission and develop effective health interventions. The aim of this study is to assess the relationship between climate factors and daily mpox cases, as well as to identify the most suitable predictive model for transmission. We analyzed confirmed mpox cases from May 5, 2022, to February 14, 2023, in the 33 most affected countries. We employed and compared the efficiency of four models: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial. We found a significant correlation between climate factors and daily mpox cases across most of the studied countries. Specifically, for each 1°C increase in the heat index (HI), daily cases increased by 7.7 % (IRR = 1.077, p < 0.05). Conversely, higher relative humidity (RH) decreased daily cases by 2.4 %, and increased wind speed (WS) reduced them by 7.3 %. The HI positively influences mpox spread, while RH and WS act as protective factors. Public health officials should consider these climate influences when developing targeted interventions.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.