Xin Liu, Liu Wang, Linlin Liu, Yuan Li, Michael Ogden, Marc Somssich, Yutong Liu, Yuwen Zhang, Minyuan Ran, Staffan Persson, Chunzhao Zhao
{"title":"FERONIA adjusts CC1 phosphorylation to control microtubule array behavior in response to salt stress","authors":"Xin Liu, Liu Wang, Linlin Liu, Yuan Li, Michael Ogden, Marc Somssich, Yutong Liu, Yuwen Zhang, Minyuan Ran, Staffan Persson, Chunzhao Zhao","doi":"10.1126/sciadv.adq8717","DOIUrl":null,"url":null,"abstract":"<div >Cell wall remodeling is important for plants to adapt to environmental stress. Under salt stress, cortical microtubules undergo a depolymerization-reassembly process to promote the biosynthesis of stress-adaptive cellulose, but the regulatory mechanisms underlying this process are still largely unknown. In this study, we reveal that FERONIA (FER), a potential cell wall sensor, interacts with COMPANION OF CELLULOSE SYNTHASE1 (CC1) and its closest homolog, CC2, two proteins that are required for cortical microtubule reassembly under salt stress. Biochemical data indicate that FER phosphorylates CC1 on multiple residues in its second and third hydrophobic microtubule-binding regions and that these phosphorylations modulate CC1 trafficking and affect the ability of CC1 to engage with microtubules. Furthermore, CC1 phosphorylation level is altered upon exposure to salt stress, which coincides with the changes of microtubule organization. Together, our study outlines an important intracellular mechanism that maintains microtubule arrays during salt exposure in plant cells.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 48","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq8717","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq8717","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cell wall remodeling is important for plants to adapt to environmental stress. Under salt stress, cortical microtubules undergo a depolymerization-reassembly process to promote the biosynthesis of stress-adaptive cellulose, but the regulatory mechanisms underlying this process are still largely unknown. In this study, we reveal that FERONIA (FER), a potential cell wall sensor, interacts with COMPANION OF CELLULOSE SYNTHASE1 (CC1) and its closest homolog, CC2, two proteins that are required for cortical microtubule reassembly under salt stress. Biochemical data indicate that FER phosphorylates CC1 on multiple residues in its second and third hydrophobic microtubule-binding regions and that these phosphorylations modulate CC1 trafficking and affect the ability of CC1 to engage with microtubules. Furthermore, CC1 phosphorylation level is altered upon exposure to salt stress, which coincides with the changes of microtubule organization. Together, our study outlines an important intracellular mechanism that maintains microtubule arrays during salt exposure in plant cells.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.