Abderrazak Saddari, Said Ezrari, Elmostapha Benaissa, Yassine Ben Lahlou, Mostafa Elouennass, Adil Maleb
{"title":"Robotization in microbiology.","authors":"Abderrazak Saddari, Said Ezrari, Elmostapha Benaissa, Yassine Ben Lahlou, Mostafa Elouennass, Adil Maleb","doi":"10.1684/abc.2024.1922","DOIUrl":null,"url":null,"abstract":"<p><p>Since 1960, Williams and Trotman had dreamed of automating all technical manipulations in bacteriology. However, this switch to automation took several decades to realize. The high cost of instruments and the attachment to classical bacteriology were the main obstacles. Automation began with blood culture incubators, and paved the way for automation in other areas of bacteriology, notably cytology, culture, identification and antibiotic susceptibility testing. Medical laboratories have been quick to recognize the efficiency of these systems and their many advantages. The reduction in turnaround times for bacteriological examinations is one of the changes that have revolutionized laboratory practice. In addition, sensitivity, safety, traceability and quality are more assured with automation. The second revolution is the integration of artificial intelligence into the processing and interpretation of bacteriological analyses. We are currently witnessing the total automation of laboratories and a reduction in human intervention. In this article, we have attempted to address all aspects of bacteriology affected by automation, and the impact of this change on current laboratory practice and quality of healthcare.</p>","PeriodicalId":93870,"journal":{"name":"Annales de biologie clinique","volume":"82 5","pages":"489-499"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de biologie clinique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1684/abc.2024.1922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since 1960, Williams and Trotman had dreamed of automating all technical manipulations in bacteriology. However, this switch to automation took several decades to realize. The high cost of instruments and the attachment to classical bacteriology were the main obstacles. Automation began with blood culture incubators, and paved the way for automation in other areas of bacteriology, notably cytology, culture, identification and antibiotic susceptibility testing. Medical laboratories have been quick to recognize the efficiency of these systems and their many advantages. The reduction in turnaround times for bacteriological examinations is one of the changes that have revolutionized laboratory practice. In addition, sensitivity, safety, traceability and quality are more assured with automation. The second revolution is the integration of artificial intelligence into the processing and interpretation of bacteriological analyses. We are currently witnessing the total automation of laboratories and a reduction in human intervention. In this article, we have attempted to address all aspects of bacteriology affected by automation, and the impact of this change on current laboratory practice and quality of healthcare.