An integrated single-cell atlas of blood immune cells in aging.

IF 4.1 Q2 GERIATRICS & GERONTOLOGY npj aging Pub Date : 2024-11-29 DOI:10.1038/s41514-024-00185-x
Igor Filippov, Leif Schauser, Pärt Peterson
{"title":"An integrated single-cell atlas of blood immune cells in aging.","authors":"Igor Filippov, Leif Schauser, Pärt Peterson","doi":"10.1038/s41514-024-00185-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in single-cell technologies have facilitated studies on age-related alterations in the immune system. However, previous studies have often employed different marker genes to annotate immune cell populations, making it challenging to compare results. In this study, we combined seven single-cell transcriptomic datasets, comprising more than a million cells from one hundred and three donors, to create a unified atlas of human peripheral blood mononuclear cells (PBMC) from both young and old individuals. Using a consistent set of marker genes for immune cell annotation, we standardized the classification of immune cells and assessed their prevalence in both age groups. The integrated dataset revealed several consistent trends related to aging, including a decline in CD8<sup>+</sup> naive T cells and MAIT cells and an expansion of non-classical monocyte compartments. However, we observed significant variability in other cell types. Our analysis of the long non-coding RNA MALAT1<sup>hi</sup> T cell population, previously implicated in age-related T cell exhaustion, showed that this population is highly heterogeneous with a mixture of naïve-like and memory-like cells. Despite substantial variation among the datasets when comparing gene expression between age groups, we identified a high-confidence signature of CD8<sup>+</sup> naive T cell aging marked by an increased expression of pro-inflammatory genes. In conclusion, our study emphasizes the importance of standardizing existing single-cell datasets to enable the comprehensive examination of age-related cellular changes across multiple datasets.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"59"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-024-00185-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in single-cell technologies have facilitated studies on age-related alterations in the immune system. However, previous studies have often employed different marker genes to annotate immune cell populations, making it challenging to compare results. In this study, we combined seven single-cell transcriptomic datasets, comprising more than a million cells from one hundred and three donors, to create a unified atlas of human peripheral blood mononuclear cells (PBMC) from both young and old individuals. Using a consistent set of marker genes for immune cell annotation, we standardized the classification of immune cells and assessed their prevalence in both age groups. The integrated dataset revealed several consistent trends related to aging, including a decline in CD8+ naive T cells and MAIT cells and an expansion of non-classical monocyte compartments. However, we observed significant variability in other cell types. Our analysis of the long non-coding RNA MALAT1hi T cell population, previously implicated in age-related T cell exhaustion, showed that this population is highly heterogeneous with a mixture of naïve-like and memory-like cells. Despite substantial variation among the datasets when comparing gene expression between age groups, we identified a high-confidence signature of CD8+ naive T cell aging marked by an increased expression of pro-inflammatory genes. In conclusion, our study emphasizes the importance of standardizing existing single-cell datasets to enable the comprehensive examination of age-related cellular changes across multiple datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
期刊最新文献
An integrated single-cell atlas of blood immune cells in aging. Multimorbidity is associated with myocardial DNA damage, nucleolar stress, dysregulated energy metabolism, and senescence in cardiovascular disease. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. Association between gut microbiota and locomotive syndrome risk in healthy Japanese adults: a cross-sectional study. Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1