Pub Date : 2024-11-23DOI: 10.1038/s41514-024-00182-0
Jake J Son, Yasra Arif, Hannah J Okelberry, Hallie J Johnson, Madelyn P Willett, Alex I Wiesman, Tony W Wilson
Research has shown age-related declines in cognitive control in the context of interference, but these studies have focused on frontoparietal networks and less is known about impacts on motor response-related dynamics in the face of distractors. Thus, we examined whether healthy aging affected connectivity between attention networks and motor circuitry using a multisource interference task and magnetoencephalography in 72 healthy-aging participants (28-63 years-old). Our results indicated stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference. Regarding Simon-type interference, stronger beta interactions were observed between left M1 and right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect (flanker + Simon presented simultaneously) indicated weaker beta connectivity between right M1 and left premotor with increasing age. These findings suggest exhaustion of age-related compensatory adaptations in the fronto-parieto-motor network with greater interference.
{"title":"Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network.","authors":"Jake J Son, Yasra Arif, Hannah J Okelberry, Hallie J Johnson, Madelyn P Willett, Alex I Wiesman, Tony W Wilson","doi":"10.1038/s41514-024-00182-0","DOIUrl":"https://doi.org/10.1038/s41514-024-00182-0","url":null,"abstract":"<p><p>Research has shown age-related declines in cognitive control in the context of interference, but these studies have focused on frontoparietal networks and less is known about impacts on motor response-related dynamics in the face of distractors. Thus, we examined whether healthy aging affected connectivity between attention networks and motor circuitry using a multisource interference task and magnetoencephalography in 72 healthy-aging participants (28-63 years-old). Our results indicated stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference. Regarding Simon-type interference, stronger beta interactions were observed between left M1 and right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect (flanker + Simon presented simultaneously) indicated weaker beta connectivity between right M1 and left premotor with increasing age. These findings suggest exhaustion of age-related compensatory adaptations in the fronto-parieto-motor network with greater interference.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"54"},"PeriodicalIF":4.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1038/s41514-024-00181-1
Luke Mansfield, Valentina Ramponi, Kavya Gupta, Thomas Stevenson, Abraham Binoy Mathew, Agian Jeffilano Barinda, Florencia Herbstein, Samir Morsli
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
{"title":"Emerging insights in senescence: pathways from preclinical models to therapeutic innovations.","authors":"Luke Mansfield, Valentina Ramponi, Kavya Gupta, Thomas Stevenson, Abraham Binoy Mathew, Agian Jeffilano Barinda, Florencia Herbstein, Samir Morsli","doi":"10.1038/s41514-024-00181-1","DOIUrl":"https://doi.org/10.1038/s41514-024-00181-1","url":null,"abstract":"<p><p>Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"53"},"PeriodicalIF":4.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dementia with Lewy bodies (DLB) is the second most common form of age-related dementia, following Alzheimer's disease (AD). DLB is associated with a worse prognosis than AD and is characterized by a more rapid progression of cognitive impairment and a poorer quality of life. In addition, the pathogenesis of DLB is less understood than that of AD, and only three genes-SNCA (α-synuclein), APOE (apolipoprotein E), and GBA1 (glucosylceramidase beta 1)-have been convincingly demonstrated to be associated with DLB. In this study, we utilized whole-genome sequencing data from 1744 Japanese individuals, comprising 45 DLB patients and 1699 cognitively normal older adults, aiming to identify new genes associated with DLB. Our genome-wide association studies of genes with potentially deleterious mutations identified the CDH23 gene as being associated with DLB, reaching a Bonferroni-corrected significance (P = 7.43 × 10-4). The gene contained three ethnicity-specific heterozygous missense variants (rs181275139, rs563688802, and rs137937502). CDH23 has been linked to deafness syndromes, and DLB patients carrying these mutations displayed symptoms of subjective hearing loss, suggesting a potential association between DLB onset and auditory impairment. Additionally, we explored human leukocyte antigen (HLA) genotypes associated with DLB but found no significant associations. This result suggests that the pathology of DLB differs from that of Parkinson's disease, which has been reported to have an association with HLA. Although a limitation of this study is the lack of replication of our findings, which require further validation in independent cohorts, our study enhances the understanding of the etiology of DLB in the Japanese population and provides new insights into the underlying mechanisms of its pathogenesis.
{"title":"Whole-genome sequencing to identify rare variants in East Asian patients with dementia with Lewy bodies.","authors":"Tetsuaki Kimura, Kosuke Fujita, Takashi Sakurai, Shumpei Niida, Kouichi Ozaki, Daichi Shigemizu","doi":"10.1038/s41514-024-00180-2","DOIUrl":"10.1038/s41514-024-00180-2","url":null,"abstract":"<p><p>Dementia with Lewy bodies (DLB) is the second most common form of age-related dementia, following Alzheimer's disease (AD). DLB is associated with a worse prognosis than AD and is characterized by a more rapid progression of cognitive impairment and a poorer quality of life. In addition, the pathogenesis of DLB is less understood than that of AD, and only three genes-SNCA (α-synuclein), APOE (apolipoprotein E), and GBA1 (glucosylceramidase beta 1)-have been convincingly demonstrated to be associated with DLB. In this study, we utilized whole-genome sequencing data from 1744 Japanese individuals, comprising 45 DLB patients and 1699 cognitively normal older adults, aiming to identify new genes associated with DLB. Our genome-wide association studies of genes with potentially deleterious mutations identified the CDH23 gene as being associated with DLB, reaching a Bonferroni-corrected significance (P = 7.43 × 10<sup>-4</sup>). The gene contained three ethnicity-specific heterozygous missense variants (rs181275139, rs563688802, and rs137937502). CDH23 has been linked to deafness syndromes, and DLB patients carrying these mutations displayed symptoms of subjective hearing loss, suggesting a potential association between DLB onset and auditory impairment. Additionally, we explored human leukocyte antigen (HLA) genotypes associated with DLB but found no significant associations. This result suggests that the pathology of DLB differs from that of Parkinson's disease, which has been reported to have an association with HLA. Although a limitation of this study is the lack of replication of our findings, which require further validation in independent cohorts, our study enhances the understanding of the etiology of DLB in the Japanese population and provides new insights into the underlying mechanisms of its pathogenesis.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"52"},"PeriodicalIF":4.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10-4. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.
{"title":"Genetic variants associated with longevity in long-living Indians.","authors":"Sandhya Kiran Pemmasani, Shakthiraju R G, Suraj V, Raunaq Bhattacharyya, Chetan Patel, Anil Kumar Gupta, Anuradha Acharya","doi":"10.1038/s41514-024-00179-9","DOIUrl":"10.1038/s41514-024-00179-9","url":null,"abstract":"<p><p>Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10<sup>-4</sup>. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"51"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging is associated with declines in cognition and brain structural integrity. However, there is equivocality over (1) the specificity of affected domains in different people, (2) the location of associated patterns of brain structural deterioration, and (3) the sociodemographic factors contributing to 'unhealthy' cognition. We aimed to identify cognitive profiles displayed by older adults and determine brain and sociodemographic features potentially shaping these profiles. A sample of Southeast-Asian older adults (N = 386) participated in a multi-session study comprising cognitive testing, neuroimaging, and a structured interview. We used computational models to extract latent mechanisms underlying cognitive flexibility and response inhibition. Data-driven methods were used to construct cognitive profiles based on standard performance measures and model parameters. We also investigated grey matter volume and machine-learning derived 'brain-ages'. A profile associated with poor set-shifting and rigid focusing was associated with widespread grey matter reduction in cognitive control regions. A slow responding profile was associated with advanced brain-age. Both profiles were correlated with poor socioeconomic standing and cognitive reserve. We found that the impact of sociodemographic factors on cognitive profiles was partially mediated by total grey and white matter, and dorsolateral prefrontal and cerebellar volumes. This study furthers understanding of how distinct aging profiles of cognitive impairment uniquely correspond to specific vs. global brain deterioration and the significance of socioeconomic factors in informing cognitive performance in older age.
{"title":"Mapping computational cognitive profiles of aging to dissociable brain and sociodemographic factors.","authors":"Aleya A Marzuki, Kean Yung Wong, Jee Kei Chan, Sze Yie Na, Arjun Thanaraju, Paveen Phon-Amnuaisuk, Samira Vafa, Jie Yap, Wei Gene Lim, Wei Zern Yip, Annette Shamala Arokiaraj, Dexter Shee, Louisa Gee Ling Lee, Yook Chin Chia, Michael Jenkins, Alexandre Schaefer","doi":"10.1038/s41514-024-00171-3","DOIUrl":"10.1038/s41514-024-00171-3","url":null,"abstract":"<p><p>Aging is associated with declines in cognition and brain structural integrity. However, there is equivocality over (1) the specificity of affected domains in different people, (2) the location of associated patterns of brain structural deterioration, and (3) the sociodemographic factors contributing to 'unhealthy' cognition. We aimed to identify cognitive profiles displayed by older adults and determine brain and sociodemographic features potentially shaping these profiles. A sample of Southeast-Asian older adults (N = 386) participated in a multi-session study comprising cognitive testing, neuroimaging, and a structured interview. We used computational models to extract latent mechanisms underlying cognitive flexibility and response inhibition. Data-driven methods were used to construct cognitive profiles based on standard performance measures and model parameters. We also investigated grey matter volume and machine-learning derived 'brain-ages'. A profile associated with poor set-shifting and rigid focusing was associated with widespread grey matter reduction in cognitive control regions. A slow responding profile was associated with advanced brain-age. Both profiles were correlated with poor socioeconomic standing and cognitive reserve. We found that the impact of sociodemographic factors on cognitive profiles was partially mediated by total grey and white matter, and dorsolateral prefrontal and cerebellar volumes. This study furthers understanding of how distinct aging profiles of cognitive impairment uniquely correspond to specific vs. global brain deterioration and the significance of socioeconomic factors in informing cognitive performance in older age.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"50"},"PeriodicalIF":4.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s41514-024-00172-2
Nirmalya Dasgupta, Rouven Arnold, Anais Equey, Armin Gandhi, Peter D Adams
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
{"title":"The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression.","authors":"Nirmalya Dasgupta, Rouven Arnold, Anais Equey, Armin Gandhi, Peter D Adams","doi":"10.1038/s41514-024-00172-2","DOIUrl":"https://doi.org/10.1038/s41514-024-00172-2","url":null,"abstract":"<p><p>Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"48"},"PeriodicalIF":4.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1038/s41514-024-00176-y
Paul T Gomez, Chase M Carver, Sonia L Rodriguez, Liguo Wang, Xu Zhang, Marissa J Schafer
Age-related changes in oligodendrocyte precursor cells (OPCs) contribute to white matter dysfunction. In aged mice, we hypothesized that myelin-dense fimbria OPCs possess niche-specific properties, compared to hippocampal OPCs. Aged fimbria OPCs were fewer, larger, and localized to neighboring microglia. We identified age-increased p16/Cdkn2a-expressing OPCs enriched for senescence-related pathways and distinct senescence signatures between hippocampus and fimbria. Aged brain OPC populations differ in microenvironment properties and responses to senescence-directed intervention.
{"title":"Aging and senescent fates of oligodendrocyte precursor cells in the mouse brain.","authors":"Paul T Gomez, Chase M Carver, Sonia L Rodriguez, Liguo Wang, Xu Zhang, Marissa J Schafer","doi":"10.1038/s41514-024-00176-y","DOIUrl":"10.1038/s41514-024-00176-y","url":null,"abstract":"<p><p>Age-related changes in oligodendrocyte precursor cells (OPCs) contribute to white matter dysfunction. In aged mice, we hypothesized that myelin-dense fimbria OPCs possess niche-specific properties, compared to hippocampal OPCs. Aged fimbria OPCs were fewer, larger, and localized to neighboring microglia. We identified age-increased p16/Cdkn2a-expressing OPCs enriched for senescence-related pathways and distinct senescence signatures between hippocampus and fimbria. Aged brain OPC populations differ in microenvironment properties and responses to senescence-directed intervention.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"47"},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41514-024-00170-4
Mandy O J Grootaert
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
{"title":"Cell senescence in cardiometabolic diseases.","authors":"Mandy O J Grootaert","doi":"10.1038/s41514-024-00170-4","DOIUrl":"10.1038/s41514-024-00170-4","url":null,"abstract":"<p><p>Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"46"},"PeriodicalIF":4.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s41514-024-00175-z
Parmita Kar, Ashok Sivasailam, Rupa Lavarti, Lun Cai, Muthusamy Thangaraju, Emma Nguyen, Bhavishya Mundluru, Raghavan Pillai Raju
The senescence phenotype is heterogeneous, as observed by the context-dependent differential expression of senescence markers. Here, we provide evidence to demonstrate an inverse relationship in the expression pattern of the two murine variants of p21 (p21v1, and p21v2) in aging and hemorrhagic shock. While an upregulation of p21v1 was observed following hemorrhagic shock injury, p21v2 was upregulated in the aged mouse. We further show that the p21v1 response is, at least, partially independent of p53.
{"title":"p53 dependence of senescence markers p21v1 and p21v2 in aging and acute injury.","authors":"Parmita Kar, Ashok Sivasailam, Rupa Lavarti, Lun Cai, Muthusamy Thangaraju, Emma Nguyen, Bhavishya Mundluru, Raghavan Pillai Raju","doi":"10.1038/s41514-024-00175-z","DOIUrl":"https://doi.org/10.1038/s41514-024-00175-z","url":null,"abstract":"<p><p>The senescence phenotype is heterogeneous, as observed by the context-dependent differential expression of senescence markers. Here, we provide evidence to demonstrate an inverse relationship in the expression pattern of the two murine variants of p21 (p21v1, and p21v2) in aging and hemorrhagic shock. While an upregulation of p21v1 was observed following hemorrhagic shock injury, p21v2 was upregulated in the aged mouse. We further show that the p21v1 response is, at least, partially independent of p53.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"45"},"PeriodicalIF":4.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}