First principles methodology for studying magnetotransport in narrow gap semiconductors with ZrTe5 example

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-11-30 DOI:10.1038/s41524-024-01459-4
Hanqi Pi, Shengnan Zhang, Yang Xu, Zhong Fang, Hongming Weng, Quansheng Wu
{"title":"First principles methodology for studying magnetotransport in narrow gap semiconductors with ZrTe5 example","authors":"Hanqi Pi, Shengnan Zhang, Yang Xu, Zhong Fang, Hongming Weng, Quansheng Wu","doi":"10.1038/s41524-024-01459-4","DOIUrl":null,"url":null,"abstract":"<p>The origin of resistivity peak and sign reversal of Hall resistivity in ZrTe<sub>5</sub> has long been debated. Despite various theories proposed to explain these unique transport properties, there’s a lack of comprehensive first principles studies. In this work, we employ first principles calculations and Boltzmann transport theory to explore transport properties of narrow-gap semiconductors across varying temperatures and doping levels within the relaxation time approximation. We simulate the temperature-sensitive chemical potential and relaxation time in semiconductors through proper approximations, then extensively analyze ZrTe<sub>5</sub>’s transport behaviors with and without an applied magnetic field. Our results reproduce crucial experimental observations such as the zero-field resistivity anomaly, nonlinear Hall resistivity with sign reversal, and non-saturating magnetoresistance at high temperatures, without introducing topological phases and/or correlation interactions. Our approach provides a systematic understanding based on multi-carrier contributions and Fermi surface geometry, and could be extended to other narrow-gap semiconductors to explore novel transport properties.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"324 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01459-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of resistivity peak and sign reversal of Hall resistivity in ZrTe5 has long been debated. Despite various theories proposed to explain these unique transport properties, there’s a lack of comprehensive first principles studies. In this work, we employ first principles calculations and Boltzmann transport theory to explore transport properties of narrow-gap semiconductors across varying temperatures and doping levels within the relaxation time approximation. We simulate the temperature-sensitive chemical potential and relaxation time in semiconductors through proper approximations, then extensively analyze ZrTe5’s transport behaviors with and without an applied magnetic field. Our results reproduce crucial experimental observations such as the zero-field resistivity anomaly, nonlinear Hall resistivity with sign reversal, and non-saturating magnetoresistance at high temperatures, without introducing topological phases and/or correlation interactions. Our approach provides a systematic understanding based on multi-carrier contributions and Fermi surface geometry, and could be extended to other narrow-gap semiconductors to explore novel transport properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以ZrTe5为例研究窄隙半导体中磁输运的第一性原理方法
ZrTe5中霍尔电阻率峰值的起源和符号反转一直争论不休。尽管提出了各种理论来解释这些独特的输运性质,但缺乏全面的第一原理研究。在这项工作中,我们采用第一性原理计算和玻尔兹曼输运理论来探索在弛豫时间近似下不同温度和掺杂水平下窄间隙半导体的输运性质。我们通过适当的近似模拟了半导体中的温度敏感化学势和弛豫时间,然后广泛分析了ZrTe5在外加磁场和没有外加磁场的情况下的输运行为。我们的研究结果再现了关键的实验观察结果,如零场电阻率异常,非线性霍尔电阻率与符号反转,以及高温下的非饱和磁阻,而不引入拓扑相和/或相关相互作用。我们的方法提供了基于多载流子贡献和费米表面几何的系统理解,并且可以扩展到其他窄间隙半导体以探索新的输运性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation Active oversight and quality control in standard Bayesian optimization for autonomous experiments Feature engineering descriptors, transforms, and machine learning for grain boundaries and variable-sized atom clusters Machine learning Hubbard parameters with equivariant neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1