Jan-Ole Kundoch, Daniel Ohde, Emil Byström, Andreas Liese
{"title":"Screening Platform for Immobilized Biocatalysts Utilizing Miniature Rotating Bed Reactors","authors":"Jan-Ole Kundoch, Daniel Ohde, Emil Byström, Andreas Liese","doi":"10.1021/acs.oprd.4c00107","DOIUrl":null,"url":null,"abstract":"Biocatalysis has matured to become a technology widely applied in the chemical industry. There are numerous potential routes to improve the performance of a biocatalytic process. Immobilizing enzymes can be advantageous as it increases stability and simplifies separating enzymes from reaction mixtures. However, establishing a biocatalytic process based on immobilized enzymes is expensive, time-consuming, and labor-intensive. The reason for this is that a multitude of parameters influence the outcome of the immobilization and the performance in the final process. Screening these parameters in parallel on a small scale is a common strategy to address these issues. However, when screening immobilized enzymes with established methods such as centrifuge tubes, the reaction conditions differ substantially from the process conditions. We present a novel screening platform for immobilized enzymes based on magnetically driven miniature rotating bed reactors (MiniRBRs) to overcome this. This system unites the advantages of small scale operation with immobilizates and the application of rotating bed reactors, which are already established to be scalable at an industrial scale. As a model system, the synthesis of acetyl phosphate from glycolaldehyde catalyzed by a phosphoketolase is used in this study. We were able to significantly increase the stability of the phosphoketolase by immobilizing the phosphoketolase and using the MiniRBR system. In addition, the versatility of the MiniRBR will be demonstrated in terms of compatibility with different enzyme carrier materials, reaction conditions, and modes of operation.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"26 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00107","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biocatalysis has matured to become a technology widely applied in the chemical industry. There are numerous potential routes to improve the performance of a biocatalytic process. Immobilizing enzymes can be advantageous as it increases stability and simplifies separating enzymes from reaction mixtures. However, establishing a biocatalytic process based on immobilized enzymes is expensive, time-consuming, and labor-intensive. The reason for this is that a multitude of parameters influence the outcome of the immobilization and the performance in the final process. Screening these parameters in parallel on a small scale is a common strategy to address these issues. However, when screening immobilized enzymes with established methods such as centrifuge tubes, the reaction conditions differ substantially from the process conditions. We present a novel screening platform for immobilized enzymes based on magnetically driven miniature rotating bed reactors (MiniRBRs) to overcome this. This system unites the advantages of small scale operation with immobilizates and the application of rotating bed reactors, which are already established to be scalable at an industrial scale. As a model system, the synthesis of acetyl phosphate from glycolaldehyde catalyzed by a phosphoketolase is used in this study. We were able to significantly increase the stability of the phosphoketolase by immobilizing the phosphoketolase and using the MiniRBR system. In addition, the versatility of the MiniRBR will be demonstrated in terms of compatibility with different enzyme carrier materials, reaction conditions, and modes of operation.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.